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Interaction of birds with wind turbines has become an important public policy issue. 

Acoustic monitoring of birds in the vicinity of wind turbines can address this important  

public policy issue. The identification of nocturnal bird flight calls is also important for 

various applications such as ornithological studies and acoustic monitoring to prevent the 

negative effects of wind farms, human made structures and devices on birds. Wind 

turbines may have negative impact on bird population. Therefore, the development of an 

acoustic monitoring system is critical for the study of bird behavior. This work can be 

employed by wildlife biologist for developing mitigation techniques for both on-

shore/off-shore wind farm applications and to address bird strike issues at airports. 

Acoustic monitoring involves preprocessing, feature extraction and classification. A 

novel Spectrogram-based Image Frequency Statistics (SIFS) feature extraction algorithm 

has been developed and was compared against traditional feature extraction techniques 

such as Discrete Wavelet Transform (DWT) and Mel Frequency Cepstral Coefficients 

(MFCC). Unlike traditional MFCC, signals were first cleaned with wavelet-denoising 

during the preprocessing stage. Additionally, a mixed MFCC-SIFS (MMS) technique was 
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also developed. Features extracted from proposed algorithms were then combined with 

various classification algorithms such as k-NN, Multilayer Perceptron (MLP) and Hidden 

Markov Models (HMM) and Evolutionary Neural Network (ENN). SIFS and MMS 

algorithms, combined with ENN and MLP, provided the most accurate results. Proposed 

algorithms were tested with real data collected during the spring migration, around Lake 

Erie in Ohio, of five nocturnally migrating bird species native to Northwest Ohio. Also, 

sparrows, warblers and thrushes passing over the University of Toledo, the Ottawa 

National Wildlife Refuge and Ohio State University‘s Stone Lab between April 20 – May 

29 were calculated. Quantification of class level migratory bird has been presented. The 

developed bird flight call recognition system is suitable for deployment for  both on-

shore & off-shore wind turbine locations. This system would be suitable for 24/7 remote 

sensing.  
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Chapter 1 

  

 

Introduction 

1.1 Background and Previous Work 

Identifying nocturnal bird flight calls is important for various applications such as 

ornithological studies and acoustic monitoring to prevent negative effects of human made 

structures and devices on birds [1] [2]. As stated by Scott Brandes, ―birds are the most 

specious group of vertebrates on the planet [and] are important consumers at several 

tropic levels‖ [3]. The latter mentioned quality means that birds play an integral role in 

controlling the insect population [4], plant-seed dispersal [5], and even flower pollination 

[6]. Birds are not only vulnerable to climate change, but also to man-made habitat 

changes including interference by structures such as aircrafts [7], wind turbines [8] [9], 

electrical lines and towers [10]. Of specific interest to this study is the interaction of birds 

with wind turbines, which has become an important public policy issue [8].  Therefore, 

the development of an acoustic monitoring system is critical for bird preservation and the 

study of their behavior.  

  Birds primarily produce their sound through the use of a unique organ known as a 
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syrinx [11]. This organ is complex in structure and function and contributes towards 

broad spectrum of vocalizations that birds, as a whole, are able to produce [11]. These 

bird vocalizations can be divided into two categories: songs and calls [12].  However, not 

all birds are capable of producing songs [12]. Singing is limited to Passeriformes, or 

perching birds. This means that nearly half of the birds in the world do not produce songs 

[13]. This may initially seem problematic when considering an audio signal based 

recognition and classification method, however, most birds use vocalizations which are 

short and unmusical and can be termed as calls [12]. From this, it is obvious that species 

level bird identification should be based on calls rather than songs. Of particular interest 

to this study are species which are being affected by wind turbines. Due to the placement 

of these wind turbines, which is usually in wide, open fields, night migration birds are 

especially susceptible to interference by them. Conveniently, many bird species give 

flight calls during nocturnal migration [14] [15]. These calls provide an ideal medium for 

species level identification and quantification during hours of darkness. 

Nocturnal flight call detection and recognition system is an application of 

bioacoustics signal detection and recognition systems. It consists of a flight call detection 

hardware system and a recognition software system [16] as shown in Figure 1.1.  
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Figure 1-1: Basic bird flight call identification system 

 

Basic components of the hardware system are microphones and recorders which 

collect and save bird calls. A flight call recognition system consists of feature extraction 

and classification. Recognition of bird species by their sounds is related to audio signal 

classification, speech recognition, music genre classification and pattern recognition, 

which have been widely studied [17] [18] [19]. Patterns of bird calls are parameters of 

sound events [20]. These parameters are known as acoustic features of sounds [20]. 

Success of recognition highly relies on how well sound events of calls are represented by 

features [21].  

To date, many studies have been performed on bird species classification [22] [23] 

[24] [25]. Traditional feature extraction methods for acoustic features include frequency 

and time domain features [22]. Examples of the features used are spectrum, bandwidth, 

average energy, zero-crossing rate, Mel Frequency Cepstral Coefficients (MFCCs), 

wavelet coefficients and Linear Predictive Coding (LPC) coefficients [22] [24] [26].  

Schrama et. al. extracted  local seven acoustic parameters  for the automatic detection of 

the European nocturnal flight calls which were: highest frequency, lowest frequency, call 
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Classifier 

Design 

Classification 

System Training 

System Testing 

Data 

Collection 

Data 

Acquisition 

HARDWARE 
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duration, loudest frequency, average bandwidth, maximum bandwidth and average 

frequency slope [27].  Differing from MFCC, wavelet based features provide both 

frequency and temporal based information about the signal [26]. Selin et al used wavelet 

coefficients for bird species identification applications [25].  GK Verma used wavelet-

based denoising at the preprocessing phase of MFCC for speaker recognition [26].  

Previously, in the study of bird species classification, MFCC features were extracted 

and different classification algorithms, such as Dynamic Time Warping (DTW) [23], 

Hidden Markov Models (HMM) [23] Support Vector Machines (SVM) [22], k-Nearest 

Neighbor (k-NN) [24] were used.  Also, Artificial Neural Vectors (ANNs) have been 

widely used in the classification of birds, as well as other animal species [28] [29] [30]. 

Selin Arja et al. used ANNs such as unsupervised Self-organizing Map (SOM) and 

supervised Multilayer Perceptron (MLP) [25]. Results of these studies were encouraging 

and pointed toward the MLP being a better classifier than the SOM for recognition of 

bird sounds. Moreover, Evolutionary Neural Networks (ENN), which combine the 

feedforward neural network and Genetic Algorithm (GA), were used successfully for bat 

echolocation calls recognition [31]. 

Feature extraction and classification algorithms that are currently used for the 

nocturnal flight call recognition systems are given in Table 1.1: 
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Table 1.1 Summary of the recognition algorithms for the nocturnal flight call analysis 

  

Flight Call Recognition Techniques 

Feature Extraction Classification 

 

Time domain 

Frequency domain 

Mel Frequency Cepstral 

Coefficients 

LPC 

Discrete Wavelet Transform 

Local Features 

 

 

Clustering Methods 

Dynamic Time Warping 

Gaussian Mixture Models 

Hidden Markov Models 

Support Vector Machines 

Artificial Neural Networks 

 

1.2 Contributions of the Research 

This thesis proposes a nocturnal flight call recognition system for the migratory birds 

of Northwest America. Algorithms were developed on the MATLAB environment. For 

this, acoustic features are first extracted, via MFCC and DWT. In order to achieve more 

distinctive features for accurate classification, a novel Spectrogram-based Image 

Frequency Statistics (SIFS) is proposed and implemented. SIFS and MFCC features are 

then combined in a Mixed MFCC and SIFS (MMS) feature extraction scheme to obtain 

robust features for bird call identification.  

Features with MFCC, DWT, SIFS and MMS schemes are used with a number of 

classifiers such as k-NN, Multilayer Perceptron (MLP), Hidden Markov Models (HMM) 

and Evolutionary Neural Network (ENN). A commercially available bioacoustics 

software, Song Scope, is also used for comparison purposes.  

Above developed algorithm was used to quantify the number of thrushes, warblers 

and sparrows in different areas of northwest Ohio. For this, the total numbers of warblers, 

sparrows and thrushes passing over the University of Toledo, the Ottawa National 
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Wildlife Refuge and Ohio State University‘s Stone Lab between April 20 – May 29 were 

calculated.  Results from these three locations were compared. 

This thesis is organized as follows: 

 Chapter 1: This chapter is the introduction to the thesis.  It discusses the 

motivation behind the work. An overview of the thesis is provided to clarify the 

aim of this work. 

 Chapter 2: Basics of bioacoustics and bioacoustics signals are explained. 

Aspects of flight call signal analysis system are introduced with a brief 

discussion on the digital signal processing and bird species.  

 Chapter 3: Various feature extraction techniques that are used in this work are 

described. Explanations on the Mel Frequency Cepstral Coefficients (MFCC), 

Discrete Wavelet Transformation (DWT), Spectrogram-based Image Frequency 

Statistics (SIFS) and Mixed MFCC and SIFS (MMS) are presented. 

 Chapter 4: The theory behind the classifiers, k-Nearest Neighbor (k-NN), 

Hidden Markov Models (HMM), Multilayer Perceptron Networks (MLP) and 

Evolutionary Neural Networks, are explained. 

 Chapter 5: This chapter gives the details of data collection and simulation. The 

results of the performances of each recognition scheme are presented.  

 Chapter 6: Conclusions and future work on this topic are given and suggested, 

respectively
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Chapter 2 

Bioacoustics 

2.1 Introduction to Bioacoustics Signals 

Bioacoustics is a multi-disciplinary science which studies animal sounds, including 

the production of the sound signal, as well as techniques used for its detection and 

recognition [32] [33] [34] .   

A general block diagram of a common bioacoustics detection system is shown in 

Figure 2-1.  

 

 

 

Figure 2-1: General block diagram of a bioacoustics signal detection system 
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A sound of interest is initially captured by a sensor system which converts the sound 

into an electrical analog signal. A Data Acquisition System (DAQ) digitizes the analog 

electrical signal which can then be stored in a Personal Computer (PC). Once the data is 

stored, Digital Signal Processing (DSP) techniques are applied to the signals for analysis, 

which includes noise reduction, feature extraction and classification [34]. This sound 

analysis helps in understanding behaviors and physiological meaning of the bioacoustics 

signal. The animal sound spectrum spans a broad frequency range, which can be seen in 

Table 2.1 [35].   

 

Table 2.1: Frequency bands and range of the animal sound spectrum 

 

 

Type Band Approximate Range 

Infrasonic 0 Hz - 16 Hz 

Audio 20 Hz – 20 kHz 

Ultrasonic 20 kHz – 160 kHz 

 

 

For example, African elephants communicate with infrasound, bat echolocations are 

in the range of ultrasonic spectrum and birds produce audio sounds [35].  The 

bioacoustics signals used in this study were bird vocalizations. The frequencies of all bird 

vocalizations are between 200 Hz to 15 kHz, which, as previously mentioned, is in the 

audio frequency range. A block diagram of a typical bird sound recognition system is 

given in Figure 2-2.  
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Figure 2-2: Generalized block diagram of a bird sound bioacoustics detection and 

recognition system 

 

 

This work relates to nocturnal bird call recognition/quantification during migration. 

When identifying night flight bird calls, a suitable recording device must be chosen and 

placed in an appropriate field to capture the avian flight calls [36].  

Recording devices include sensors to capture the sound of interest. The type of 

sensor, for the detection of bioacoustics signals, depends on the frequency range of the 

signal of interest. Since the frequency of the avian sound is in the range of audio signals, 

the most proper sensor is a microphone [36]. Microphones convert flight calls to electric 

signals [36]. This analog signal usually has a very low electric value and needs to be 

amplified [37]. To meet this need, some of the microphones have inbuilt amplifiers. An 

external amplifier must be used if the microphone does not have an amplifier [37]. Once 

the analog signal is amplified, it must be digitized using an Analog to Digital (A/D) 

converter [34]. The digital signal is then transferred to a PC with a Data Acquisition 

Bird Sound Microphone Amplifier 

A/D Converter DAQ Sound Verification 

and Segmentation 
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(DAQ) system [34]. Finally, the digitized signal can be analyzed with sound analysis 

techniques [36]. Recognition systems, consisting of preprocessing, feature extraction and 

classification, can be utilized to recognize the incoming signal.  

2.2 Basics of Bioacoustics Digital Signal Processing 

Signals represent a physical variable of interest as a function of time. The target bioacoustics 

signals of this work are bird vocalizations which are categorized as audio signals. Digital Audio 

Signal Processing is one of the digital signal processing applications [38]. A variety of PC 

hardware and software products are available to analyze an assortment of signals. Although these 

products change in capability, flexibility and complexity, some of the analytical techniques are 

similar in all systems. Commonly used operations in signal processing applications are 

convolution, filtering, and frequency-time domain conversions [39]. In this section, some of the 

basic concepts of audio signal digital processing techniques will be explained. This will provide a 

conceptual background on sound analysis and will help clarify feature extraction and 

classification techniques. 

2.2.1 Concept of a Sound and Digitization 

Sound is created by sound sources which can be thought of as vibrating objects. 

Vibrating objects generate pressure waves which are formed by alternation of 

compression and rarefaction in an elastic medium such as air and water. The velocity of a 

sound wave through air is approximately 340 m/s at sea level [40]. Generated sound 

waves propagate from a source in all directions as air is pressurized. The amplitude of the 

pressure decreases with the square of the distance from the source [41]. Sound is 

recorded by a recording device, a microphone, which measures the changes in the air 
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pressure [36]. Microphones produce electrical signals, such as voltage and current, in 

proportion to the change in the air pressure. The rate of the air pressure vibrations is 

called the pitch of a sound and is often referred to as its frequency. 

All bioacoustics signals coming from the recording device are analog in nature and 

vary continuously with time [40]. The varying electrical signals from the recording 

device are processed using an amplifier which is an analog signal processing unit [37]. 

However, before the sound signal can be analyzed by a PC, the signal must be digitized 

by an A/D converter, as PCs are based on a digital format [36].  A/D converters 

constantly sample the time–varying voltage of a continuous analog signal with a 

particular sampling rate [42]. Sampling rates are measured in Hertz (Hz) or samples per 

second. In another words, continuous information is converted into numerical values 

before processing it. To digitize a sound signal, the sound pressure, which was obtained 

from the output of a microphone, is sampled. Figure 2-3 shows an analog sine signal and 

its sampled version.  

 

 

Figure 2-3: Pure sine wave before and after sampling 

Input Signal: Sine Wave 

Ideal 

Sampling 



12 

 

Analog signals are sampled according to the sampling theorem which states that the 

sampling frequency should be at least twice that of the highest frequency component in 

the signal [43]. If the sampling frequency is twice that of the highest frequency 

component of the signal, it is called the Nyquist Frequency [43] [42]. The Nyquist limit is 

mathematically expressed as: 

      (2.1) 

where,  is the sampling frequency and  is the highest frequency component of the 

signal. For example, in order to detect high pitched sparrow calls (11 kHz), a sampling 

frequency of at least 22 kHz is needed. 

2.2.2 Representation of a Sound Signal 

A digitized sound signal can be represented in two different domains: the time 

domain and the frequency domain [44] [41]. Time domains represent the signal with a 

waveform plot in which the amplitude of the signal is a function of time. Amplitudes of 

the signal are the instantaneous air pressures of the bioacoustics signal.  On the other 

hand, frequency domains represent the signal with a plot in which the amplitude is a 

function of the frequency. Frequency domains show how much of a signal's energy is 

present as a function of frequency and as the sound changes with time. Figure 2-4 shows 

the time and frequency domain representations of a simplest sound signal, pure sine, 

where the sampling frequency is 200Hz 
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Figure 2-4: Time and frequency representations of a sine wave 

 

It is seen from the frequency domain graph that the original frequency, which 

contains the information of the signal, is a vertical line. Frequency spectrums allow for 

the examination of energy in a frequency range of interest. This is also called spectral 

analysis [44]. Signals are transformed to the frequency domain from the time domain via 

Discrete Fourier Transformation (DFT) [39].  

2.2.2 Discrete Fourier Transformation (DFT) and Spectrogram 

Fourier transformation is a mathematical transformation operator that converts the 

time domain signal into the frequency domain [39] [43]. DFT is a type of Fourier 

transformation where the signal consists of discrete values. Since the signals are digitized 

by an A/D converter, DFT has  more accurate transformation. Both inputs and outputs are 

discrete samples in DFTs. Assuming is the length of a sequence,  
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and ; DFT is defined as:  

    (2.2) 

where . DFT is a very important concept in digital signal processing. 

Applications such as spectral analysis and frequency responses of filtering are based on 

DFT [39]. However, since there are totally outputs, the evaluation of DFT needs  

operations [45]. Therefore, a computationally more efficient version of DFT is commonly 

used for such applications. This version is known as Fast Fourier Transformation (FFT). 

Results of FFT transform are exactly the same as those from DFT [39]. The only 

difference is the speed of algorithms, since FFTs need only  operations [45]. 

The most famous FFT algorithm was proposed by Cooley and Tukey in 1965 and is 

known as the Cooley-Tukey Fast Fourier Transform algorithm [46].  If DFT is assumed 

to have a composite size of , a Cooley-Tukey FFT algorithm recursively 

divides DFT into smaller sizes of  and  [45] [46]. In other words, the input of the 

FFT is a sequence of complex discrete N amplitude values in time. The output of FFT 

transform is a sequence of N/2 amplitude values which represents N/2 discrete frequency 

components. In Fourier transforms, the frequency bins are all evenly spaced. Each 

frequency bin represents the frequencies at up to the half of the sampling rate ( ). 

In bioacoustics, the change in frequency information of the signal, with respect to 

time, is of interest. For instance, if a spectrum was created by applying FFT to an entire 
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bird sound, it would only show the representation of amplitudes of each frequency 

component. The variance of the amplitude values of different frequencies, rather than a 

general representation, is of interest. In order to obtain the FFT spectrum, the signal is 

divided into frames [43, 44]. Spectral leakage, which is also referred to as the sidelobe 

effect [44], is another issue with general FFT [47]. A time record is continuously 

repeated, and signals contained in this time record thus appear at periodic intervals that 

correspond to the length of the time record. If the time record has a non-integral number 

of cycles (non-periodic), spectral leakage occurs [47]. In other words, the non-integral 

cycle frequency component of the signal does not correspond exactly to that of the 

spectrum frequency lines.  While this may be problematic, windowing the signal with 

window functions can eliminate spectral leakage [47] [48]. There are different types of 

window functions such as: Blackman, Hamming, Hanning, Rectangular, and Triangular 

[44]. Each of the window functions has different characteristics with different shapes. For 

instance a Blackman window has a -57 dB sidelobe rejection while a triangular window 

has -25 dB [44]. Therefore, each of the window functions reduces the sidelobe effect at 

different level.  

2.2.4 Bioacoustics Signal Enhancement 

One of the prominent problems in the application of bioacoustics signal identification 

is the noise. Noise can highly affect the classification results and cannot be totally 

removed [49].  

The most common method to reduce noise artifacts in bioacoustics signals is the use 

of bandpass filters in which the frequency bands are limited to where the target signals 
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are seen [50]. For instance, flight calls of thrushes are in the range of 2 kHz to 4 kHz. 

Instead of analyzing the whole spectrum, with a bandpass filter, frequencies higher than 4 

kHz and lower than 2 kHz can be filtered. Bandpass filters consist of low-pass and high-

pass filters. The bandwidth of a bandpass filter is the difference between the upper and 

lower frequencies.  

Another method for bioacoustics signal enhancement is spectral subtraction [51]. The 

additive noise model of a signal is expressed as: 

    (2.3) 

where,  is the clean signal, is the noisy signal and is the additive 

noise. Spectral subtraction is based on this model. First, the noise spectrum of the signal 

is estimated by taking the Fourier transform of the clean regions in the waveform and 

calculating their magnitudes [52]. The frequency domain of each frame in the signal is 

estimated as: 

   (2.4) 

where,  is the estimated clean signal and  is the phase component of the 

noisy signal. 

2.3 Bird Sound Production and Vocalization 

Humans produce sound through the use of the larynx, which is close to mouth. Unlike 

humans, birds have a different sound production organ: a syrinx [40]. The syrinx is deep 
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inside the chest of a bird and allows air, which is leaving the lungs, to pass through it. It 

is a bipartite vocal organ, indicating that it is capable of producing two tones 

simultaneously. Bird vocalizations can take the form of songs or calls, where songs are 

complex sounds which can be tonal or inharmonic and calls are shorter and less complex 

[12]. A basic schematic of the sound production system in a bird is shown in Figure 2-5. 

 

 

Figure 2-5: System of a bird sound production  

 

 

Bird sounds are often represented by spectrograms. A bird sound consists of four 

parts: notes, syllables, phrases and songs [12]. Syllables can be composed of multiple 

notes, and the more notes a syllable has, the more complex it‘s structure.  Phrases occur 

as a series of syllables, occurring one after another, and songs are formed by sequence of 

phrases. Figure 2-6 shows a spectrogram of a Bewick‘s Wren‘s song with hierarchical 

parts. 
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Figure 2-6: Spectrogram of Bewick‘s Wren song with basic hierarchical parts    

 

The diversity of the sound units makes the implementation of bird sound 

identification systems challenging, especially at the species-level. This becomes more 

complex when the birds‘ sounds are combined with environmental noises. Furthermore, 

most of the individual species have more than one song and call. To make the species-

level identification process more systematic, syllables are considered as they are the base 

of the bird vocalization [3]. Although there exists a wide range of different syllables, 

Figure 2-7 shows the basic types of syllables that are produced by five different species. 

From the first spectrogram to the fifth, the structures of the syllables are in the type of: 

constant frequency, frequency modulated whistle, broadband pulse, broadband with 

varying frequency components, and segments with strong harmonics [3] [53]. Harmonics 

are components of the waveform which have frequencies that are multiples of the lowest 

frequency components, or fundamental frequencies. 

Syllables 

Phrases 

 

Notes 



19 

 

 

 

Figure 2-7: Spectrogram representations of five different types of syllables 

 

 

Singing birds form only the half of bird population and are called Passeriformes [54]. 

While many birds do not sing, almost all of them use calls to communicate [54]. 

Generally, a call of a bird consists of one syllable or sequences of the same syllable. 

Birds usually have more than one call, such as alarm, territorial, begging, pleasure, flock, 

distress, nest and flight [54]. Different species have a different numbers of calls which 

usually varies between five to ten call types [54] [12]. Species can have one type of calls 

which may be similar to different  type of calls in other species‘ calls [11] [12].   

In this work, nocturnal flight calls were used for the identification of species. Flight 

calls are the main vocalization of many species and are used during long flights. 

However, not all species give flight calls [55]. Flight calls are used for flock  

coordination, especially during diurnal and nocturnal migration times [56] [54]. Flight 

calls are also used for foraging and interacting during breeding [57].  Also, in some 

species, such as the Swainson‘s thrush, flight calls are given during the day by perched 
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birds and at nights by birds in nocturnal migration flight. It should be stated that flight 

calls are not the only vocalization during flight. Some species sing and give chirp notes 

while in flight and some have no flight calls at all, not even during migration time [57]. 

Furthermore, some species, such as the yellow-rumped warbler, have more than one 

flight call.  

Characteristics of flight calls change drastically from one species to another. Syllables 

that are shown in Figure 2-7 are all examples of flight calls. Ornithologists and bird 

watchers are mostly hear ―zeep‖ and ―seep‖ flight call sounds. Generally, flight call 

repertoires are generated during diurnal migration times since the birds must actually be 

seen [55]. Still, some of the nocturnal flight calls cannot definitively be said to come 

from a particular species and sometimes will be classified as ―complex”[55] 

2.4 Analysis of Bird Sounds 

Sound analysis allows for the understanding of the characteristics of acoustic signals 

[34]. Although the identification of bird species, which is based on their sounds, is 

complex, it is more practical when only a limited number of species are being considered. 

Therefore, the first step is to prepare a list of species that are going to be identified. In 

this thesis, identification will be performed based on the flight calls. Therefore, different 

samples of flight calls for each species should be collected or found from reference 

guides. These flight calls are called training calls.  

The analysis is composed of two main parts: flight call feature extraction and 

classification [3]. The types of features that will be extracted depend on the 

characteristics of the flight calls in the training calls database. Types of features and 



21 

 

classifiers commonly used for bird sound identification were given in Table 1.1.  

A variety of analysis techniques and equipment are currently commercially available. 

Sound analysis algorithms are generally based on Digital Signal Processing (DSP). Also, 

aside from commercial products, new algorithms and systems can be developed through 

the use of software such as MATLAB. As it was stated before, spectrographic analysis 

represents the signal graphically and allows frequency components of the signal of 

interest to be examined or compared with other signals in order to find the similarities 

and differences. 

2.4.1 Commercial Sound Analysis Systems 

In commercially available packages, algorithms usually include noise reduction, 

feature extraction and classification techniques. All analyses are based on spectrographic 

techniques. Some commercial software, which can be used for bird sound analysis, are 

summarized in Table2.2. 
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Table 2.2: Commercial systems and programs for bird sound analysis 

 

 

Sound Editing 

Software 

Analysis Software Package System  

(Automatic Monitoring and 

Detection) 

-Adobe Audition 

-Audocity 

-Goldwave 

-Wave Flow 

-Raven 

-Sound Analysis Pro 

-Sigview 

-Avisoft Bioacoustics 

 

-Wildlife Acoustics: 

 Song Scope 

Software 

 SM2 ARU 

-SoundID: 

 SoundID Software 

 SoundID ARU 

 

 

Sound editing programs have tools to edit audio files visually. Tools, such as delete, 

copy, paste, cut, amplify, fade, normalize, reverse, echo, sound file conversion, export, 

and import are included in these programs.  Analysis software provides visualization, 

measurement and analysis of sounds through the use of different algorithms. For instance, 

Raven [58] has various spectrogram parameters which can obtain high quality 

spectrograms. Sound Analysis Pro [59] has various feature values that can be viewed 

from the display. 

Some of the analysis systems are package systems. A package analysis system 

consists of an Autonomous Recording Unit (ARU) and analysis software which are 

compatible to each other. The advantage of the package system is that sound can be 

automatically monitored and detected.  



23 

 

2.5 Bioacoustics Equipment and Software Used in This 

Work 

For this study, Cornell‘s Raven Pro 1.3 [58] and Wildlife Acoustic‘s Night Flight Call 

Package [60] were purchased. Raven Pro was used during the beginning phase of the 

study to visually examine the signals. Then, Song Scope Software and SM2 ARU were 

used for automatic  monitoring and detection of night flight calls. 

2.5.1 Raven Pro 1.3 

Raven Pro 1.3 [58] software is a product of the Cornell University Bioacoustics 

Research Program. Raven Pro acquires, measures and visualizes the bird sounds in 

waveform and spectrogram views.  

The Raven recording software is capable of sending the audio input to a file while 

sequencing is specified by the user. It can record the real time data in Audio Interface 

File Format (AIFF) or Waveform Audio File Format (WAV) format. While recording, 

Raven allows the user to visualize the real-time signal with multiple views, such as 

spectrograms, waveforms, spectrogram slice views or selection spectrum views. Some 

important properties of Raven Pro 1.3 are: 

 Raven has six types of window functions which are Blackman, Hamming, Hann, 

Kaiser, rectangular and triangular windows. 

 Raven provides various measurements. Begin time, end time, low frequency and high 

frequency measurements are default measurements in Raven. In addition to the 

default measurements, based on the spectrogram values, the following are other 

available measurements that can be selected  in Raven Pro: Average power, delta 
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power, energy, maximum frequency, peak frequency, maximum power, peak power, 

center frequency, 1
st
 quartile frequency, 3

rd
 quartile frequency, Inter Quartile Range 

(IQR) bandwidth, center time, 1
st
 quartile time, 3

rd
 quartile time, max amplitude, min 

amplitude, peak amplitude, peak amplitude, RMS amplitude, max time, min time, 

peak time, begin time, delta frequency, delta time, end time, high frequency, low 

frequency, length, max bearing, peak correlation and  peak lag.    

 Raven provides a paging feature when large data sets are involved. Also, Raven 

provides batch operations with its batch channel exporter.  

 Raven Pro 1.3 is able to work with more than two channels and supports both NI-

DAQ and Audio Stream Input Output (ASIO). 

 Spectrogram correlation functions provide the peak correlation values which give the 

information regarding the similarity between spectrograms. Waveform correlation 

functions provide the time offset when two signals are the most similar to each other. 

 There are three modes of default detection in Raven.  

Interactive detection: Interactive detection is useful to visualize the performance of 

various detectors on a short selection of the recordings. Also, multiple detectors can 

be tested on a set of pages with color-coded results.  

Full detection: With large data sets, the full detection mode is better than the other 

modes of detection. After the basic parameters are selected for short selections of a 

recording, the full detection can be performed over the entire recording. 

Real-time detection and the recorder: This detection mode provides real-time 

detection of the events during the recording process. The detected events can be saved 

as individual sound clip files as well as in a recorded file sequence. 
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While Raven Pro 1.3 is superior to Song Scope in some aspects, the most significant 

disadvantage of it is the fact that it is not capable of classifying the bird calls efficiently. 

Also, its software recording feature is inefficient and inadequate for long periods of time.  

2.5.2 Song Scope Software 

Wildlife Acoustics has developed a commercial software program, called Song Scope 

[61], for the automatic detection of birds, bats and frogs. Song Scope is one of the few 

commercial software on the market for bird call recognition applications. The Song 

Scope software was used to classify both narrowband and wideband vocalizations with 

limited training data. The classification algorithm of Song Scope is based on Hidden 

Markov Models (HMM) and spectral feature vectors. The extracted features are similar to 

Mel Frequency Cepstral Coefficients (MFCC‘s).  

Song Scope bioacoustics software can be used to scan large wav files. Song Scope 

provides viewable spectrograms and, more importantly, scans the long field recordings 

which can automatically classify species of interest. The basic steps of Song Scope are 

shown in Figure 2-8. 

 

Figure 2-8: Block diagram of Song Scope Software 

 

 

Implementation starts by determining the list of species that are of interest. For each 

species, a number of distinct training calls must be collected. Then, the recognizer of 

each species is built separately. In this step, all parameters are set manually depending on 
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the characteristics of the corresponding flight call. The constructed recognizers are then 

used to scan wav files. As a result, possible vocalizations are listed on a spreadsheet. 

Candidate vocalizations are tested manually and visually to see if they have been detected 

correctly. An example of a snapshot of the batch processing step is given in Figure 2-9. 

 

 
 

Figure 2-9: Batch processing snap-shot while common nighthawk, bird flight calls are 

being identified with Song Scope 

 

 

Firstly, FFT is applied to the corresponding call. Then, during the preprocessing, 

Wiener and bandpass filters are applied to the weak signal to reduce the noise and 
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enhance the signal. Once the signal is cleaned, a log frequency transformation, similar to 

a mel scale, is performed. Before applying the signal detection algorithm, power 

normalization is performed on the signal to normalize the log power levels. For feature 

extraction, the features of interest are expressed as Discrete Cosine Transform 

coefficients and power level features. After the feature extraction, a classification 

algorithm, which is based on Hidden Markov Models, is applied.  Two dimensional DCT 

and K-Means vector clustering are applied for automatic classification of the syllables 

and an HMM is built for each class in the database. Finally, additional statistical filters 

are applied to the classification algorithms to reduce the false positives. 

A summary of Song Scope Algorithms is:  

1. Preprocessing: Wiener filter → bandpass filter → log frequency scale 

transformation → normalization of the log power levels 

2. Signal Detection Techniques: First and the last vocalizations are detected by 

examining the total energy of the bandpass filter. 

3. Feature Extraction: DCT coefficients and power level features are extracted. 

4. Classification: HMM estimation with Viterbi training, DCT and K-Means Vector 

clustering algorithms are applied. 

5. Additional Statistical Filters applied to improve classification algorithms 

2.6 Bird Species Used in This Study 

In this work, nocturnal flight calls were recorded during the spring migration time. 

The species of birds that migrate in Northwest Ohio were researched and some of these 

are listed in Table 2.3 [62] [63].  
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Table 2.3: Spring migration table of Northwest Ohio 

 

 

Northwest Ohio Spring Migration Table 

EARLY MIGRANTS MID-MIGRANTS LATE-MIGRANTS 

Dominant Species 

-Ruby crowned Kinglet 

(male) 

-Hermit Thrush 

-Yellow rumped Warbler 

(male) 

-White throated Sparrow 

(male)  

 

Subdominant Species  
-Nashville Warbler (male) 

-Western Palm Warbler  

-Black and white Warbler 

(male) 

-Song Sparrow  

-Swamp Sparrow 

 

Over Flight Species 

-Yellow throated Warbler 

-Prairie Warbler 

-Worm eating Warbler  

-Louisiana Waterthrush  

-Kentucky Warbler 

-Hooded Warbler 

Dominant Species  
-Blue Jay 

-Ruby crowned Kinglet 

(female) 

-Swainson's Thrush  

-Magnolia Warbler (male) 

-Yellow rumped Warbler 

(female)  

-White-throated Sparrow 

(female) 

- Savannah Sparrow 

 

Subdominant Species  

-Veery 

-Tennessee Warbler  

-Nashville Warbler (female) 

-Yellow Warbler 

-Chestnut sided Warbler  

-Black and White Warbler 

(female) 

-Common Yellowthroat  

-Lincoln Sparrow  

 

 

Dominant Species  

-Cedar Waxwing  

-Red eyed Vireo 

-Magnolia Warbler (female)  

-American Redstart 

-Indigo Bunting  

-Tennessee Warbler 

 

Subdominant Species  
-Ruby throated 

  Hummingbird 

-Warbling Vireo 

-Bay breasted Warbler 

-Wilson‘s Warbler  

-Canada Warbler 

 

After preliminary examination of the recordings, flight calls of five species were 

studied in this work. Species were selected based on the number of their flight calls. The 

five Nocturnal flight calls that were analyzed in this work come from the following 

species: American Redstart (AMRE), Common Nighthawk (CONI), Savannah Sparrow 

(SAVS), Swainson‘s Thrush (SWTH) and Tennessee Warbler (TEWA). The names, 
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classes and scientific names of these birds are given in Table 2.4 

 

 

Table 2.4: Species, their classes and scientific names that are used in this work  

 

 

Species Class Scientific Name 

American Redstart Warbler Setophaga ruticilla 

Common Nighthawk Goatsuck Chordeiles minor 

Savannah Sparrow Sparrow Passerculus sandwichensis 

Swainson‘s Thrush Thrush Catharus ustulatus 

Tennessee Warbler Warbler Oreothlypis peregrina 

.  

 It should be noted that, although the common nighthawk is not a migrant, it was 

included in the study since many nocturnal flight calls were recorded. Figure 2-10 shows 

spectrograms and picture of the corresponding bird species. Spectrograms were obtained 

by using Raven Pro 1.3. 
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Figure 2-10: Spectrograms and photographs, www.allaboutbirds.com, of each species 

used in this work (obtained by Raven Pro 1.3)  
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In the following two chapters; feature extraction methods and classification 

techniques will be explained which were used for the identification of five species in 

Figure 2-10. 
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Chapter 3 

 

 

Feature Extraction 

Preprocessing, feature extraction and classifications are basic computational steps 

required in a bird flight call recognition system. The input of the flight call recognition 

system is bird flight calls. The raw flight call includes many features and non-relevant 

information such as background noise and characteristics of the recording device. These 

make raw input data complex and unsuitable as an input to a recognition system. 

Therefore, all non-relevant information should be removed during preprocessing [25]. In 

this project, preprocessing steps varies depending upon selected feature extraction 

method. Each species has flight calls of different characteristics and, therefore, after 

preprocessing, distinctive features of flight calls must be extracted in order to build a 

successful recognition system. Distinctive features drastically differ from species to 

species. Also, unique features should have low correlation with other features [64]. 

Extracted features should contain the maximum amount of information about the species 

within a smaller dimension. In another words, feature extraction takes the high 

dimensional data and transforms it to a low dimensional space [65]. Extracted features 
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are sent to a classifier which will specify class of unknown bird.  Classification 

performance of classifiers highly depends on how well features represent the individual. 

If features of different individuals overlap, the misclassification percentage increases. In 

this thesis, discrete wavelet, mel frequency and image frequency based features are 

extracted. Feature extraction methods are described in following sections.  

3.1 Wavelet Coefficients 

The wavelet transform represents the signal in a time-scale domain. Wavelet analysis 

gives a time-scale region. Whereas the Fourier Transform (FT) and Short-time Fourier 

Transform (STFT) give frequency and frequency-amplitude information respectively [66] 

[67].  While FT and STFT give constant resolutions at all frequencies, wavelet transform 

gives multiple resolutions. Fourier transform uses sinusoid wave, as a basis function to 

analyze the signal. However, wavelet transform uses wavelets as a basis function. The 

major advantage of wavelets is the ability to perform local analysis over a particular 

region of interest. This means that the width of the wavelet function changes for each of 

the frequency components. Wavelet transforms can be Continuous Wavelet Transform 

(CWT) and Discrete Wavelet Transform (DWT). The main difference between them is 

the scale of operation which can be either continuous or discrete.  

3.1.1 Continuous Wavelet Transform 

Wavelet transformation decomposes an input signal into its detail and approximation 

coefficients by using family functions. Family functions are generated by the scaling 

function ( ) and the wavelet function ( ). The scale function is called the father wavelet 
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and wavelet function is called the mother or basis function. Wavelet functions are formed 

by shifting (translation) and scaling (dilation or compression) the mother wavelet, , as 

[66]: 

        (3.1) 

where, a and b are real numbers. Parameter ‗a‘ scales the wavelet function. Also, it 

dictates the time and frequency resolution of the wavelet transform. Parameter ‗b‘ is a 

shifting parameter and it corresponds to the time information in the transform.  

CWT performs an operation between the time domain signal and a basis function 

which is similar to convolution. CWT of a signal , with respect to a basis wavelet 

function is given as: 

     (3.2) 

The original signal can be reconstructed from  and the mother wavelet as 

shown in Equation 3.3. In order to reconstruct the original signal, the admissibility 

condition [68] has to be satisfied. The admissibility condition is given in Equation 3.4. 

          (3.3) 

        (3.4) 

In above equations,   is the Fourier transform of  and is the 

admissibility constant. 
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3.1.2 Discrete Wavelet Transform and Multi-Resolution Analysis 

Unlike CWT, Discrete Wavelet Transform does not carry redundant information. 

DWT provides only a sufficient amount of information for both analysis and synthesis of 

the original signal leading to a decrease in computation time.  

A discrete wavelet family can be obtained by making ‗a‘ and ‗b‘ discrete parameters 

as shown in Table 3.1 [66], [67].  

 

Table 3.1 Equations for CWT and DWT 

 

 

For a continuous time signal, x(t) 

Continuous wavelet analysis Discrete wavelet analysis 

 

 

  

 

In this thesis, discrete wavelet and scaling will be used. After substituting discrete 

parameters into Equation 3.1, discrete wavelet family ( ) is obtained as: 

    (3.5) 

Usually,  is selected as ―2‖ and  is selected as ―1‖ as in Equation 3.6. From this, 

discrete scale and positions would be obtained as powers of two. These selections will 
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make the analysis more efficient because computations in computer systems are based on 

dyadic scale.   

     (3.6) 

The analysis of the signal at different frequencies with different time scales is called 

Multi Resolution Analysis (MRA) [69]. Discrete wavelet transforms analyze the signal 

using MRA. The scaling function of MRA is defined as: 

     (3.7) 

A signal can be written as a series expansion in terms of the scaling function and 

wavelet function as [70]: 

  (3.8) 

where, and are the discrete scaling coefficients and the discrete wavelet 

coefficients, respectively. The first part of the summation in Equation 3.8 gives the 

approximation coefficients of the while the second part gives the detail coefficients. 

The following equation is obtained by inserting the Equation 3.6 and Equation 3.7 into 

the Equation 3.8 [70]: 

 (3.9) 
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If the wavelet function is orthonormal to the scaling function, level j approximation 

coefficients and level j detail coefficients are obtained as seen in Equation 3.10 and 

Equation 3.11, respectively [70]: 

    (3.10) 

   (3.11) 

 

The DTW decomposes the input signal into its detail and approximation coefficients 

using the discrete scaling and the wavelet functions. From Equation 3.10 and Equation 

3.11, it is seen that wavelet coefficients can be constructed by applying discrete low pass 

( ) and high pass ( ) filters to the signal and then scaling it [70] [71] [25]. If the 

transform is wavelet decomposition, scaling is a down sampling by ‗2‘. If the transform is 

a wavelet reconstruction, scaling is a up sampling by ‗2‘ [67]. The filtering procedure, at 

the basic level, is shown in Figure 3-1. 
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Figure 3-1: Filtering process of discrete wavelet transform 

 

This practical algorithm was first developed by Mallat in 1988 and is called a two-

channel subband coder [69]. It yields a fast wavelet transform which, when a signal is 

passed through it, yields wavelet coefficients at a much faster rate. The procedure of 3-

level decomposition of signal using high pass and low pass filters is shown in Figure 3-2.  

 

 

 

 

 

 

 

 

Figure 3-2: Three level discrete wavelet decomposition 
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3.1.3 Wavelet Families and Features 

There are numerous types of wavelet families, such as Daubechies (db), Coiflets 

(coif), Symlets (sym), Discrete Meyer (dmey) and Biorthogonal (bior) [25] [26]. 

Choosing the wavelet function and decomposition level is critical in wavelet 

transformation when it comes to extracting the most relevant information from the 

signals. With that said, there is currently no consensus on which particular wavelet family 

works most optimally to remove a particular type of noise. As an example,  properties of 

three different wavelet families will be presented in this subsection: Morlet, Daubechis 

and Symlets. The Morlet wavelet was formulated by J. Morlet for a study of seismic data 

[72] [73]. The Morlet wavelet function is show in Figure 3-3.  

Figure 3-3: Morlet wavelet function 
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Daubechies and Symlet wavelets are orthogonal wavelets that have the highest 

number of vanishing moments for a given support width. In the naming convention, db-i 

or sym-i, i is an integer that denotes the order, e.g. db10 is 10
th

 order Daubechies wavelet 

and sym8 is 8
th

 order Symlets wavelets. An i
th

 order wavelet has i vanishing moments, a 

support width of 2i-1 and filter length of 2i. These wavelets are suitable for use with both 

the continuous wavelet transform and the discrete wavelet transform. The difference 

between these two wavelet functions is that Daubechies wavelets are far from symmetry 

while Symlet wavelets are nearly symmetric. The Daubechies wavelet is a common 

choice for the analysis and synthesis filters, because it possesses several nice properties. 

The filter produced by the Daubechies family of wavelets are orthogonal and the 

frequency response has maximum flatness at  and . The second property 

leads to excellent results when Daubechies filters are used for the DWT decomposition 

and reconstruction of a large class of signals. The Daubechies filters are compactly 

supported i.e the impulse response is zero outside a certain time interval. As an example, 

Figure 3-4 shows wavelet (ψ) and scaling functions (Φ) for fourth order Symlet and 

Daubechies wavelets. 
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Figure 3-4: Scaling and wavelet functions of db 10 and sym 10 wavelet families 

 

Daubechis wavelet families have been shown to be practical in speech recognition 

[26]. In this thesis, db10 wavelet families were used with 6-level decomposition.  

Once the approximation and detail coefficients were extracted, basic statistics were 

applied to detail coefficients in order to generate feature vectors. For each bird call, fifty-

four feature vectors were obtained. Feature vectors carry the information of the range, 

maximum, minimum, mode, median, mean, mean absolute deviation, median absolute 

deviation and standard deviation of the detailed coefficients.  
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3.2 Wavelet-denoising Based Mel Frequency Cepstral 

Coefficients 

Mel Frequency Cepstral Coefficient‘s (MFCC's) are obtained from the mel frequency 

cepstral spectrum which is very similar to the perceptual perspective of the human 

auditory system [74]. Human ears hear frequencies lower than 1000 Hz with a linear 

scale and the frequencies higher than 1000 Hz with a logarithmic scale. MFCCs mimic 

this nonlinear loudness perception [74].  

Traditional preprocessing of the MFCC consists of filtering and normalization. In this 

thesis, wavelet-denoising has been applied to the signals for noise reduction. With 

wavelet-denoising, more adequate features have been obtained for the flight call 

recognition system. A general block diagram of the system is given in Figure 3-5.  

 

 Figure 3-5: Wavelet denoising based MFCC feature extraction scheme 

3.2.1 Wavelet-denoising 

Discrete Wavelet Transformation (DWT) was explained in Section 3.1.2. In DWT the 

audio signal is passed through complementary filters whose output consists of a low-
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frequency component and a high- frequency component. They are popularly named as 

approximations and details. A single level decomposition gives two components of 

coefficients namely approximation and detail. The decomposition can be applied to 

multiple stages. With each level of decomposition, the output of the low pass filter 

contains more of the original signal content which is called approximation coefficients. 

Approximation coefficients are free from high frequency components which are nothing 

but noise in the signal. Therefore DWT can be used to denoise the signal. Decomposition 

of the signal is explained as following: 

Initially the signal  is decomposed to one level and the corresponding 

approximations and details are obtained. The decomposition of a signal  is given by: 

     (3.14) 

where,  is an approximation coefficient and is a detail coefficient. It is observed 

that, with decomposition, low-frequency components, that are essentially actual signals, 

are separated from the corresponding high-frequency components. With multilevel 

decomposition, still more high-frequency components are separated. The signal  is 

then subjected to multilevel decomposition with levels 3, 4, 5, 6, etc. and the 

corresponding approximations and details are analyzed. Multilevel (n-level) 

decomposition of is given by, 

 (3.15) 
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where,  is n-level approximation and , , … ,  are corresponding 

detail coefficients. 

Most of the high frequency components are separated from the signal in the first 

detail  itself. Details obtained in the consecutive levels, further separate the noise 

components from the signal thus leaving the signal free from noise. The signal which has 

been reduced in the number of samples can be up sampled or interpolated to get back the 

original length. The approximation which is noise free is now suitable for analysis.  

It is observed that the detail  consists of the high frequency components of the 

signal. This detail values can be manipulated by limiting the amplitudes of the noise. 

Marginalization of the detail should be done carefully as this detail may consist of high 

frequency components which are an integral part of the actual signal. The threshold value 

specifies the levels of noise that are to be removed. Therefore, choosing the threshold 

value is an important aspect for denoising without the loss of any useful data.   

An example of four-level wavelet-based denoising technique is explained in the 

following figures. Figure 3-6 is time-domain representation of a real signal, a Swainson‘s 

thrush flight call. Spectral responses before denoising are given in Figure 3-7. It can be 

seen that most of the signal is distributed in the lower frequency regions and glitches 

(noise) are uniformly distributed throughout the spectrum. 
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Figure 3-6: Original signal, Swainson‘s Thrush call, with noise 

 

 

Figure 3-7: Spectral responses of the real signal 
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The signal is then decomposed into low-frequency (approximations) and high-

frequency (details) signals. Figure 3-8 and Figure 3-9 show the detail and approximation 

coefficients after decomposition, respectively.  

 

 

 

Figure 3-8: Detail coefficients of the signal. 

 

 

 

 Figure 3-9: Approximation coefficients of the signal 
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The information of interest normally resides in the low frequency components [25] 

[68]. At the 4
th

 level, approximations will have signal and noise, can be taken directly and 

are free from high-frequency components. Figure 3-10 shows the real signal and the 

denoised signal after the wavelet decomposition. 

 

 

Figure 3-10: Real signal, noise and denoised signal after wavelet denoising 

 

A spectrum plot can be obtained again after denoising as seen in Figure 3-11. 

Compared to Figure 3-7, it is observed that there is less area under the high frequency 

region, confirming that there has been a considerable removal of noise. 
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Figure 3-11: Spectral responses after wavelet-based denoising 

 

Based on preliminary tests, db4 and Simlet wavelet families yielded good results for 

flight call signals. The number of decomposition levels depends on the application and 

the satisfaction of the user. With 3-4 levels of decomposition, flight call signals will be 

denoised to an extent that is sufficient for this project. If an integral part of the signal has 

high frequency components, more levels of decomposition should be applied in order to 

extract the original signal from noise. 

3.2.2 Filtering and Normalization 

After wavelet-based denoising, all signals are filtered with bandpass filters. Bandpass 

filters clear the information below 1300 Hz and above 11000 Hz. These frequency ranges 

were chosen because the lowest frequency component of the flight calls is observed as 

1300 Hz and the highest frequency component is observed as 11000 Hz. Cleaned signals 



49 

 

have been normalized due to possible mismatches between training and test conditions. 

The amount of variation in the data is reduced by normalization. During normalization, 

every sample of the bird flight call is divided by the highest amplitude value. The mean 

of the flight call signals are then subtracted from the normalized signal to remove the 

unwanted DC offset.  

3.2.3 Mel Frequency Cepstral Coefficients 

Mel Frequency Cepstral Coefficients (MFCC) are short term power spectral features of 

a sound [74]. To obtain the mel frequency features, the signal of interest is first divided 

into frames. Then each frame is preprocessed by applying a windowing function to 

reduce the discontinuities at the beginning and end of the signal. The next step is to take 

the fast Fourier transform of each windowed frame and convert frames into frequency 

domain. Then, the frequency spectrum of the signal is multiplied by the mel frequency 

filter bank [75]. The mel frequency filter bank consists of triangular filters that have a 

triangular bandpass frequency response. With the filter bank defined, the next step is to 

find the coefficients of the first frame by calculating the discrete Cosine Transform. 

Figure 3-12 gives a block diagram illustrating how MFCC features were obtained. 
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Figure 3-1 2: Block diagram for MFCC feature extraction method 

 

 

In this work, equations similar to those found in [75] were used to derive the 

MATLAB program. Initially, the mel spectrum was described. Unlike cepstral spectrums 

which have unequal frequency spacing; the mel scale cepstral spectrums have equal 

(linear) spacing if the frequency is higher than 1 kHz and unequal (logarithmic) spacing 

otherwise. Mel frequency is defined as: 

    (3.16) 

The program starts by frame blocking the bird call with each frame having the length 

of 512, and applying a Hamming Window to the frame. The Hamming Window can be 

mathematically represented as:  

                                           (3.17)           

where  and M (frame length) is 512. Then, to each window frame, a 

Discrete Fourier Transform (DFT) is applied as:  

                                    (3.18)        
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where  represents the frequency and, with birds reaching almost 11 

kHz in their calls, is set as  and again . After Fourier 

coefficients are obtained, the magnitude spectrum of  is taken as in Equation 3.19, to 

reject the imaginary parts. 

               (3.19)                           

With the magnitude of the DFT derived, the next step is to scale the magnitude 

spectrum logarithmically. This is performed using Equation 3.20, where , 

 is the number of filter banks and  is the filter bank. The mel filter bank, which 

consists of triangular filters, is defined in Equation 3.21 where  is the center 

frequencies.  

   (3.20) 

 

                                        (3.21)  

In this work, twenty four triangular bandpass filters were used to construct the mel 

filter bank. Figure 3-13 shows the MATLAB plot of a constructed mel spaced filter bank. 

The bandwidth and spacing of the each filter are in accord with the mel scale in the 

frequency domain.    



52 

 

Figure 3-13: Mel spaced filterbank with 24 triangular bandpass filters 

 

Equation 3.22 is used to derive the mel scale, which converts Hertz into Mel.  is set 

as . The corresponding mel scale is obtained as in Figure 3-14 

                                                          (3.22)                                           
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Figure 3-14: Mel scale vs. Hertz scale 

 

 

Once the Mel Scale is derived, it is solved for a fixed frequency resolution using 

Equation 3.23; where is the highest frequency and is the lowest frequency of 

the filter bank on mel scale. 

                                              (3.23)                                                    

 

In the algorithm; with a maximum frequency of 11 kHz,   is set as  and 

 is set as  using Equation 3.22. The center frequencies of the mel scale, , 

are calculated using the inverse of Equation 3.22, which is expressed as: 

                                                  (3.24)                                                      
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Then, by substituting the obtained center frequencies and the frequency function into 

Equation 3.21; the mel filter bank is obtained. With the filter bank defined, the next step 

is to find the coefficients of the first frame. The first step is converting from the Hertz 

frequency scale into the mel frequency scale using Equation 3.22. Then the Discrete 

Cosine Transform (DCT) of the created MFCC‘s are found using: 

                                                 (3.25)                                     

Finally, from the DCT, the coefficients are placed in descending order of information. 

The higher order coefficients are discarded in order to remove the components due to the 

periodic excitation source. The first DCT coefficient is also discarded because it 

represents the average power of the call and skews the results of the MFCC‘s harmonics. 

In this work, the next twelve coefficients were taken, of the twenty four, and the same 

steps were applied to the next frame of the bird call. Thus, for each frame; a feature 

vector was calculated that consisted of twelve coefficients. Then, averaged MFCC‘s were 

obtained by overall frames. This yielded twelve features for each bird call. 

3.3 Spectrogram-based Image Frequency Statistics (SIFS) 

Fourier theory indicates that a signal can be represented as a sum of an infinite series 

of sine and cosine [43]. Fast Fourier Transform (FFT) [39] can be used as a feature 

extraction technique. The drawback of FFT is its lack of time-localization analysis. 

Therefore, although FFT is appropriate for stationary signals, it is not well-suited for non-

stationary signals. This problem was solved by Dennis Gabor [76], when he first 

developed Short Time Fourier Transform (STFT) technique. The STFT partitions the 
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non-stationary signal into windows of signals with short periods of time. Then, those 

windows are treated as stationary signals. FFT is applied to each window separately.   

Bird calls used in this work were not distinguishable in waveforms. Therefore, 

measurements for feature extraction can be achieved through use of spectrograms. 

Example of a waveform and a spectrogram for a Swainson‘s thrush call is given in Figure 

3-15.   

 

 

 

Figure 3-15: Waveform and spectrogram of Swainson‘s Thrush call 

 

 

A spectrogram is constructed by applying STFT to the signal [77]. Discrete time 

STFT is defined as [78]: 
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                                   (3.26) 

Where, is the signal,  is the window function and  is the index of the signal. 

Bird calls can be represented with Equation 3.26, which can be visualized as an image 

called spectrogram. A spectrogram shows how spectral characteristics of the signal vary 

with time. A spectrogram is constructed by applying the FFTs vertically in an image, and 

dividing a different column for each data segment in the time domain. Conventionally, 

the vertical axis represents the frequency information and horizontal axis represents the 

time information. At a certain frequency and time, the magnitude of the value is 

proportional with the spectrogram, which is considered as a third dimension. Amplitude 

is indicated by a variety of colors. Darker pixels indicate peaks in the spectrogram. A 3D 

spectrogram of a Swainson‘s Thrush test call is shown in Figure 3-16. 
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Figure 3-16: 3D spectrogram of Swainson‘s Thrush test call. 

 

The technique of Spectrogram-based Image Frequency Statistics (SIFT) feature 

extraction is explained with an example using three different bird calls as shown in 

Figure 3-17. Spectrograms of thrush, sparrow and warbler real calls are shown and it can 

be observed that these bird calls do not have the same length, amplitude, or noise 

distribution.  
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Figure 3-17: Spectrograms of Swainson‘s Thrush, Savannah Sparrow and Tennessee 

Warbler. 

 

 

In order to extract Spectrogram-based Image Frequency Statistics (SIFS) features, 

several observations are made from Figure 3.17: 

 Bird calls had the highest amplitude in the signal. 

 Bird calls were most obviously distinguishable in the time-frequency domain. 

 Low frequencies had the highest noise amplitude noise. 

From above observations, SIFS features were extracted using following operations:  

 

1. The spectrogram of each call was extracted by setting the sampling frequency to 22050 

Hz, window length to 512, overlap to 50% and number of FFT points to 256. 

 

2. The lowest frequency of a bird call in the database was 1300 Hz. Therefore, bottom 

most frequency responses of the spectrogram were filtered. Bottom most frequency 

responses were obtained as 30 using the following relation: 

     (3.27) 
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where,  is the bottom most frequency responses,  is the sampling frequency, 

 is number of FFT points and  is the lowest call frequency. 

 

3. The position of spectral responses inside the spectrogram was of more interest than 

their amplitude. Therefore, all spectral responses of amplitude at least 10% from the 

amplitude of the overall maximum spectral peak of the spectrogram were set to 1. Other 

spectral responses were set to 0. 10% as a custom threshold that keeps as much of the 

signal as possible while still discarding a reasonable amount of noise.  A threshold value 

was chosen after making some observations for each species‘ spectrograms. The resulting 

image was a binary image. 

 

4. A dilation operation was performed on binary images to enhance the continuity in the 

call signature by reducing holes and gaps between objects and expanding the white pixel 

regions. Images were dilated with a structuring element [79]:  

     (3.28) 

where, A is an image, B is a structuring element and  is a dilation operator. Dilation 

is a type of morphological operation [80] that enlarges or flattens objects in an image 

[80]. When the dilation process is applied to binary images, it is very similar to a 

convolution process. The structuring element is the most important component of a 

dilation process. In fact the structuring element can be thought of as a small binary image 

with user defined size and shape. It can be a shape of square, rectangle, circle or a line. 
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The structuring element determines how objects in an image will be flattened. The origin 

of the structuring element, B, is laid over each pixel of the input image. The process of 

dilation can be summarized in two main steps [81] [82]: 

a. If the origin of B encounters with a zero-valued pixel, nothing happens and 

operation continues with the next pixel. 

b. If the origin of B coincides with a one-valued pixel; pixels of B and pixels of the 

image that are covered by B are subjected to a logical ―OR‖ operation. 

If the purpose of a dilation operation is to soften sharp lines, a circular structuring 

element is used. If the purpose is to enlarge the width and height of an object at the same 

proportion, a square structuring element is usually used. In this thesis, the object of the 

structuring element was to enlarge the area of chirp spectrogram. Chirps were observed 

as small areas or lines and, therefore, the structural element was created as a vertical line 

of 5 pixels. An empirical threshold, based on the observation that flight calls were visible, 

was at least 4 consecutive windows. The dilation then enlarged the area of the chirp 

spectrogram to at least 20 pixels. The area and bounding box of each region was 

computed and all regions of 8-connected white pixels were mapped. If the area of the 

region was lower than 20 pixels, the region was blackened and ignored. 

 

5. The largest signature of a flight call was observed as 50 columns. Therefore, the image 

with an exact width of 50 columns was obtained by removing black columns and 

stretching the resulting image, as shown in Figure 3-18. New features which represent 

thrush, sparrow and warbler flight calls can be seen in Figure 3-18. 
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Figure 3-18: Features after cleaned spectrogram 

 

6. The last step of the SIFS technique is dimensional reduction. Features that were 

obtained previously are computationally inefficient. Therefore, the number of features 

that represent the flight calls needs to be reduced.  Thus, frequency statistics were applied 

for feature reduction. Frequency statistics compute the lowest, highest, mean and median 

frequencies, assuming that the input images are cleaned spectrograms. Properties needed 

are as follows:  

 Bounding box - the smallest rectangle that covers all white pixels 

 Centroid - the centroid of the white pixels 

 Pixel list - a list of the coordinates of all pixels 

All the properties were obtained by using ―regionprop function‖ in MATLAB. 

Features of lowest, highest, mean and median frequencies were computed for the whole 

image, first 3/7
th

, middle 3/7
th

 and last 3/7
th

 of the image as shown in Figure 3-19.  
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Figure 3-19: Dimension reduction part of the SIFS feature extraction method 

 

Feature vectors of a flight call became more distinctive by extracting statistical 

features for different parts of the image. Thus, each call provided sixteen features and 

they could be used for the classification. The SIFS feature extraction scheme is 

summarized in Figure 3-20. These steps were applied to all test and training calls. 
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Figure 3-20: Summary of the SIFS Technique 
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3.4  Mixed MFCC and SIFS (MMS) 

Features from different methods can be hybridized in order to achieve higher 

performance than features that are obtained from one method. MMS features were 

created by combining MFCC and SIFS features as shown in Figure 3-21. Mixed features 

carry the Mel Frequency information of a call, as well as frequency statistics of its image, 

which are obtained from the spectrogram. MFCC features form the first half of the 

feature vector while SIFS features form the second half of the feature vector resulting in 

28 features for each call. Assume a nocturnal flight call has twelve MFCC features and 

sixteen SIFS features that are in the form of:  

  (3.29) 

   (3.30) 

 Then the hybridized feature vector can be represented as: 

 (3.31) 
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Figure 3-21: Recognition block diagram with MMS feature extraction 

 

In this chapter, four different feature extraction methods were implemented to obtain 

unique feature vectors for each bird flight call. Each of these vectors will be fed into 

different classifiers which will be explained in the next chapter for species recognition. 
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Chapter 4 

Classification 

Extracted features are classified using machine learning techniques. There are 

different classification techniques in the context of machine learning. The aim of 

classification techniques is to classify unknown objects based on the classification 

measurements [83]. In this thesis, four different types of classifiers were implemented to 

classify bird flight calls. To this end, k-nearest neighbor (k-NN), Hidden Markov Models 

(HMM), Multilayer Perceptron (MLP) and Evolutionary Neural Network (ENN) are 

used.  

4.1 K-nearest Neighbor Classifier (k-NN) 

k-NN is a supervised classifier, and, although it is simple, it is very powerful when 

classifying data [83]. k-NN classifiers classify test samples based on the similarities 

between training and test samples in feature space, where similarity is measured in 

distance metric. Distance metrics include Euclidean, Mahalanobis, Correlation and 

Cosine. The number of nearest neighbors that must be checked to assign the unlabeled 

test data is referred to as k. The optimum distance metric and number of neighbors must 
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be determined for satisfactory classification results. The algorithm starts by labeling the 

training data. Parameters of the algorithm are defined by setting the value of k and the 

type of similarity measure. According to the similarity measure, the k closest points 

(nearest neighbors) are found for each test data. Then, each test data is assigned to a 

class, whose label appears as the majority in the k nearest neighbors. 

k-NN is a supervised learning algorithm therefore, the class of each training data 

( ), is known initially. If the test data is assumed to have n members 

(  ); then steps required to implement the k-NN algorithm are 

explained as follows: 

1. Define the number of neighbors, k. 

2. Calculate distances between the query instance test data, , and all the training 

samples ( ). From this, a distance vector is obtained as: 

 (4.1) 

3. Sort distance values in a distance vector in ascending order as: 

    (4.2) 

From the above statement, it is seen that;  is the nearest distance to 

the , is the next nearest distance to the  and so on. So, is the nearest 

neighbor of ,  is the second nearest neighbor of  and so on.  
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4. Assign each of the test data to the class having the most examples among the k 

nearest neighbors. 

An example of this method is given in Figure 4-1 where k=6. The distance vector is 

calculated and among the six nearest neighbors, three of them are members of class III. 

Therefore, the unknown bird is assigned to class III. 

 

 
 

Figure 4-1: k-NN classification for an unknown bird. Dots denote class I, triangles denote 

class II and stars denote class III. 

 

 

In this work, four different similarity measurements were used to determine the best 

classification results. The comparison results are given in the Chapter 5. Formulas of the 

similarity measurements that were used are given in Equations 4.3 - 4.6. For simplicity, 

equations are arranged to give the similarity between only two data, x and y. Since each 

data contains more than one feature (e.g. a bird call contains thirteen MFCC features); 

both x and y are assumed to be a vector.   

 Euclidean distance: Euclidean distance gives the distance between two points in 

Euclidean space as: 
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           (4.3) 

 Mahalanobis distance:  Mahalanobis distance decorrelates different features and 

can be calculated as: 

                   (4.4) 

where is the covariance matrix of the training data.  

 Cosine similarity: Cosine similarity measures the angle difference between two 

data vectors as:  

    (4.5) 

 Pearson correlation: Pearson correlation coefficients give a number between +1 to 

-1 and it measures the degree of similarity between variables x and y. Pearson‘s 

Correlation Coefficient can be expressed as: 

    (4.6) 

There is no written algorithm that would give the best similarity measurement for 

applications. Therefore the optimum similarity measurement has to be found with 

preliminary experiments before going further with next phases of the any application.  

4.2 Hidden Markov Model (HMM) Classifier 

Classifying unknown input data becomes easier when it is assumed that each of its 

elements is independent. However, this assumption cannot be used when elements of data 
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are dependent on each other. For instance; in English, the probability of seeing the letter 

h after the letter t is higher than the probability of seeing letter x in the same position. In 

this section, Markov models will be explained where the current state of a data is 

dependent on its previous state. 

4.2.1 Discrete Markov Processes 

The Markov process is a stochastic process which means that at any time, for a 

sequence of states ( ), the transition from one state to another, depends on the 

current state and the previous states [83]:  

   (4.7) 

The state of the system at time t is symbolized as . Therefore, the expression 

 states that system is in state  at time t. 1
st
 order Markov models are a special 

case of the Markov models. In 1
st
 order Markov models; the state at time t+1 depends on 

only the previous state at time t: 

  (4.8) 

4.2.2 Hidden Markov Models 

In Hidden Markov Models (HMMs), the states are not observable; only the outputs 

are observable, which are called as observation states. Elements of HMM can be 

represented as: 
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      (4.9) 

where, 

- N is number of states in the model:  

- M is number of distinct observation symbols for each state and  is one of the  

 discrete observation in the observation set 

- A is the state transition probability: ,   

- B is the observation probability: ,   

- π is the initial state probability vector. 

N and M are implicitly defined structure parameters. Therefore, λ= (A, B, π) is the 

parameter set of HMM. There are three canonical problems to derive HMM: 

1. Evaluating HMM: Given the parameter model of HMM, λ, the probability of a 

particular observation sequence has to be computed.  

2. Decoding HMM:  Given the parameter model of HMM, λ, and a particular 

observation sequence, the state sequence, which has the highest probability to generate 

that observation sequence, needs to be found. To find a maximum over all possible state 

sequences, a Viterbi algorithm is used. 

3. Training HMM: Given a set of observation sequences, the most likely set of 

parameter models, λ, has to be found. A Baum-Welch algorithm is used to train the 

HMM, which is a special case of the Expectation-maximization procedure. 

The following equations were derived from previous works in order to implement the 

HMM algorithm [83, 84]. 
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Solution of the first problem: 

The forward-backward procedure is used to overcome the first problem. The forward-

backward procedure consists of two phases: computation of forward variable (α) and 

computation of backward variable ( ).  

Firstly, the observation sequence is divided into two parts. The first part is the 

forward procedure, which starts at time 1 and ends at time t. The forward variable is 

calculated at this part, recursively. Given the model , the forward variable is defined as: 

    (4.10) 

The forward algorithm consists of initialization step and recursion step. The 

initialization step is calculated as: 

     (4.11) 

The recursion step is calculated as: 

   (4.12) 

The backward procedure must now be implemented. The backward procedure starts 

at time t+1 and continues to the end of the observation sequence. Given the model  and 

state  at time t; the backward variable is defined as: 

    (4.13) 

The backward algorithm also consists of initialization step and recursion step. The 

initialization step is calculated as: 
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      (4.14) 

And the recursion step is calculated as: 

     (4.15) 

Solution of the second problem: 

Second canonical problem aims to find the state sequence ( ) of a 

given model , that has the highest probability to generate the observation sequence 

( ). Given the observation sequence and the model,  is defined as: 

     (4.16) 

where is the probability of being at state , at time t. To construct the state 

sequence, for each time t, the maximum probability ( ) is taken as: 

      (4.17) 

Equation 4.17 does not include the state transition conditions and a Viterbi algorithm 

is used to overcome this problem. Given the model and observation sequence, the highest 

probability of a single path at time t is expressed as: 

 (4.18) 

where the state sequence ends at state . Then, starting from t=1, the optimum path is 

found for each t, recursively. The four main steps of the Viterbi algorithm are: 
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 Initialization: 

      (4.19) 

      (4.20) 

where  

 Recursion: 

    (4.21) 

   (4.22) 

 Termination: Termination occurs when t=T as: 

    (4.23) 

    (4.24) 

 Path backtracking: 

     (4.25) 

Viterbi algorithms are very similar to forward-backward procedures. However, 

while forward-backward algorithms consider all previous states to calculate the new state 

at time t, Viterbi algorithm takes into account only one state, that has the maximum 

probability. 

Solution of the third problem: 

Third canonical problem is related with HMM training. Training of the HMM aims to 

find the model parameters of the HMM. This is achieved by learning from the training 
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data. To find the model parameters, , the learning parameter ( ) is 

defined as: 

  (4.26) 

The learning parameter can also be calculated as: 

   (4.27) 

A Baum-Welch algorithm is used to calculate model parameters. A Baum-Welch 

algorithm is an Expectation Maximization (EM) process. It consists of an E-Step and an 

M-Step, as explained below. 

 E-Step: For current model parameters,  and  are computed. 

 M-Step:  is computed by using  and  that are obtained at E-Step. 

 Stop Condition: EM procedure continues until a convergence, 

  is obtained. 

After the convergence, model parameters, and  are calculated as: 

     (4.28) 

    (4.29) 

    (4.30) 
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The HMM implementation that was discussed previously is for discrete observation 

sets. In this thesis observation vectors (features of bird calls) were continuous. Therefore, 

Discrete Hidden Markov Models (DHMMs) were implemented for the bird call 

classification.  Continuous observations were discretized using a k-means algorithm.  

4.2.3 K-Means Algorithm  

K-means algorithm is a vector quantization and one of the most common 

unsupervised learning techniques [83]. Each data is assigned only one cluster with K-

means algorithm. The algorithm divides a set of data points into non-overlapping groups 

of points, which are called clusters. K is a positive number and represents the number of 

clusters. Each cluster has different characteristics and points of one cluster carry the 

similar properties. Data points are grouped by calculating the distances between the data 

and cluster centroids. Mean squared error functions are generally used to minimize the 

sum of squares of distances between data and the corresponding cluster centroid.  

The K-means algorithm in this work was implemented as follows: 

1. Initialize K clusters (i.e. K=8) with random points and calculate the centroids of 

each cluster. Centroids of each cluster are the mean of the points in the cluster. 

2. Determine the distance of each observation to the centroids. Then, according to 

the distance value, assign each observation to the cluster that has the closest 

centroid. 

3. Calculate the new centroids by following these steps:  
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 Group the observation sets based on the distances as explained in step 2. The 

observation set is partitioned based on the Euclidean distance from the 

centroids.  

 After each data in the observation set is assigned to their new cluster, a new 

centroid of each cluster is calculated.  

The algorithm stops if re-computing the centroids will result in a very small change 

(i.e. J=0.001) for each centroid. This is controlled by the objective function: 

   (4.31) 

where is the distance measured between a data point and the 

centroid of cluster j.  

By using the K-Means clustering algorithm, continuous bird call observations were 

discretized. Then, three canonical problems of HMM were solved as explained 

previously.  

The basic block diagram of the implemented DHMM classification process is given 

in Figure 4-2. At the training phase, HMM was built for each species. The number of 

HMM models should be equal to the number of different bird species. At the testing 

phase, problem 1 was solved. To recognize unknown sets of observations, the features 

were discretized by a k-means algorithm. Then, for each HMM model that represents the 

training bird species, the probability of generating the unknown observation was 

calculated. The model that gives the highest value when generating the input observations 

was the recognition result. 
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Figure 4-2: Discrete-HMM model for bird call classification 

 

4.3 Multilayer Perceptron (MLP) Classifier 

In this section, Multilayer Perceptron (MLP) artificial neural networks are explained. 

MLP networks are feedforward artificial neural networks which can be used for 

classification and regression [83].  

4.3.1 Concept of Perceptron 

A perceptron is a simple neuron which is the basic processing element of a neural 

network. Usually, practical applications of perceptrons are very limited. However, since 

the theoretical analysis of practically useful neural networks is usually difficult, it is more 

convenient to understand the theory of a simple perceptron [85].  

The perceptron has multiple real-valued inputs and each input has a weight and an 

activation function. The output of the perceptron is obtained by linear combination of its 

input weights and applying a nonlinear activation function to the sum. The actual output 

of neuron j can be expressed as [85]:  
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    (4.32) 

where,  is the vector of weights for the connection between neuron i and neuron j, 

 is the vector of inputs,  is the bias of the neuron j and is the activation function. A 

model of a simple perceptron is shown in Figure 4-3: 

 

 

Figure 4-3: Model of a simple perceptron 

 

 

Step functions were the first activation functions used in the concept of the original 

perceptron by Roseblatt in 1962 [86]. Step functions are expressed as: 

     (4.33) 

As seen from Equation 4.33, the output of the network is either true (1) or false (0) 

depending on the input. Thus, step functions are mostly used in binary classification. This 

is the biggest limitation of the simple perceptron. Because of its limited outputs, the 

simple perceptron can only classify linearly separable sets of vectors [83]. The set is 

linearly separable, if, and only if, output values can be separated by a line [87]. Linearly 

separable and inseparable sets of vectors are shown in Figure 4-3 and Figure 4-4 
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respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4: Linearly separable set 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5: Linearly inseparable set 

 

4.3.2 Multi-Layer Perceptron 

The single-layer perceptron can only classify linearly separable problems. For non-

separable problems it is necessary to use more layers. A multi-layer perceptron (MLP) 
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network has one or more hidden layers between input and output layers [83]. 

MLP networks are called feedforward artificial neural networks because information 

flows in a single direction from the input nodes to the output nodes. The network is fully 

connected, because every node in a layer is connected to all nodes in the next layer. If 

some of the links are missing, the network is partially connected. A typical architecture 

for a MLP multilayer neural network with one hidden layer is shown in Figure 4-6. 

 
Figure 4-6: Three layer feedforward network 

 

 

In Figure 4-6, the first layer is the input layer. The input layer receives the signal and 

passes it to the nodes in the next layer, which is a hidden layer. Each unit in the hidden 

layer is a neuron and applies a nonlinear activation function to its weighted sum. Then, 

nonlinear activation function values that are computed in hidden layers are combined at 

the output layer [83]. Usually, only one hidden layer is used because analysis of the 

network becomes more complex as the number of hidden layers increases.   

Once the architecture of MLP neural network is selected, the input signals are 

prepared. Input signals, in this work, were the features of bird flight calls. With selected 

network architecture and input signals, the MLP network is trained. Training is 

Input Layer Hidden Layer Output Layer 
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performed by a learning algorithm. The learning of the MLP network is similar to a 

simple perceptron. However, the output of a multilayer perceptron is a nonlinear function 

of the input due to the hidden layers. Also, each neuron has weights associated with its 

inputs, resulting in a higher number of weights to be adjusted when an error is made with 

a piece of training data. The most common learning technique is through the use of a 

supervised backpropagation algorithm to train the MLP network [83] [25]. Since network 

training is supervised, the network has to be provided with desired outputs for different 

inputs. After training is completed with various inputs, the network is tested with an 

unknown input set. If the network fails to classify the unknown input set, training 

procedures are reapplied to the network. 

4.3.3 Backpropagation Algorithm 

The role of the backpropagation training algorithm is to set the network's weights and 

thresholds to minimize the classification error at the testing phase.  

As it was stated before, simple perceptrons use a step function as an activation 

function. On the other hand, MLP backpropagation networks usually use the sigmoid 

function [83]. The sigmoid function is a nonlinear function and defined in Table 4.1. 

 

Table 4.1: Sigmoid function and its illustration 

 

 

Sigmoid Function 
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Considering a network with one hidden layer, in which the input layer nodes are 

represented as i, output layer nodes are represented as k and hidden layer neurons are 

represented as j. Then the output value for a node j in the network is calculated as: 

    (4.34) 

where is the total input of the node j.  is calculated as: 

    (4.35) 

where n is the number of inputs to node j,  is the weight of the connection between 

each node i and node j,  is the bias (threshold) of the neuron j,  is the threshold value 

being used for node j, and  is the input value for input node i. Thresholds are usually set 

to a random value in the range [0-1]. 

The performance of the network is computed through the use of an error function. 

The error signal for the output node k is defined as:  

     (4.36) 

where  is the desired value and  is the actual value of the node k. 

Backpropagation algorithms use a gradient search technique to minimize the mean 

squared error value. The error gradient of the output node k is defined as:  

     (4.37) 
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where is the weighted sum of the input values at node k, and y is the sigmoid 

function. Since y is defined as the sigmoid function of x, the derivative of the sigmoid 

function could be used to derive the error gradient. Sigmoid functions can easily be 

differentiated as: 

    (4.38) 

Using the above equation, the error gradient is expressed as:  

    (4.39) 

Then, the error gradient for each node j is calculated as: 

   (4.40) 

After the error gradient value is calculated, the values of the weights are changed 

according to the following equations: 

     (4.41) 

    (4.42) 

where  and  are weights in the network,   is the learning rate, and  is the 

input value to the input node i. 

The procedure of backpropagation algorithm that was implemented in this work is 

summarized as follows: 

1. Initialization: Initialize the network by setting weights to random values. Weights 

are usually set to small values in the range [-0.5-0.5] 
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2. Forward pass: Feed the input signals through the network from the input layers to 

the outputs. Since the weights are set randomly, the output value would be 

completely different than the desired value. 

3. Error function: Calculate the error of each neuron in the network.  

4. Backward pass: Feed calculated error values through the network. Values of 

weights are adjusted with the feed backward pass to reduce the error of the next 

time. 

5. Iteration: The process is repeated in this way until the error is minimized. In other 

words, the algorithm stops when outputs produced for the training data are 

sufficiently close to the desired values. 

In the testing phase, test inputs and new patterns are sent to the network for 

classification. Because MLP networks have randomly initialized weights, running 

experiments with the same parameter may yield different results from time to time. 

4.4 Evolutionary Neural Network (ENN) Classifier 

The ENN classifier consists of feedforward neural networks and a Genetic Algorithm 

(GA). Feedforward Neural Networks were explained in Section 4.3.2. 

4.4.1 Genetic Algorithm (GA) 

The learning algorithm responsible for training the neural network is a fundamental 

characteristic of an Artificial Neural Network (ANN). Traditional neural networks use 

backpropagation algorithms, such as the previously explained MLP network, for training. 

However, backpropagation algorithms have two main disadvantages [31]: reaching the 
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local minima and inefficient estimation of the topology. Therefore, a Genetic Algorithm 

(GA) was used to train the feedforward network in this work. GAs are very efficient in 

optimizing  both weight and topology selections.  

Genetic algorithms operate similarly to the natural evolution process when searching 

and optimizing a problem. In a complex, high dimensional search space, GAs search for 

the best solution based on the evolution. Principles of genetic algorithms were proposed 

first by John Holland in 1975 [88].  

Instead of finding one solution, genetic algorithms produce a solution set with 

different solutions. By doing so, in the search space, lots of points are evaluated 

simultaneously. Thus, the probability of finding the best solution increases.  

Genetic algorithm starts with sets of chromosomes which represent sets of solutions. 

Sets of chromosomes are called populations. Chromosomes are received from 

feedforward networks. Each chromosome is evaluated according to its fitness value. 

Populations of solutions are selected by using chromosomes with better fitness values. 

Fitness functions indicate the quality of the chromosome. Best solutions are found by 

applying genetic operators such as crossover and mutation. New populations are called 

offspring. Chromosomes that form the offspring are called parents. Steps are repeated 

until a termination condition is satisfied. The termination condition is satisfied if 

acceptable solutions have been found or computational resources have been spent. Steps 

of the GA are given in Table 4.2. These steps are explained in detail in the next 

section[89]. 

 

 



87 

 

 

 

 

 

Table 4.2: Basic steps of the Genetic Algorithm 

 

 

1. Initialization 

 Define the size of the population of chromosomes 

2. Fitness Function 

3. Create offspring 

 Selection by using Roulette Wheel Selection 

 Apply genetic operators (crossover and mutation) 

4. Iteration 

 If the termination condition is satisfied: Stop and Return the best solution 

 If the termination condition is not satisfied: Go to step 2 

 

4.4.2 ENN Algorithm 

ENN algorithms consist of training and testing phases. In the training phase, 

feedforward networks are trained by genetic algorithms. A block diagram of an ENN 

algorithm is given in Figure 4-7. 
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Figure 4-7: Block diagram of Evolutionary Neural Network 

 

 
Training of the ENN algorithm was performed using following steps: 

Initialization: The following were defined at the initialization step: 

 The number of chromosomes 

 The number of generations 

 Crossover probability 

 Mutation probability 

 Number of training and test data  

 Initial random population of chromosomes  

 The initial weights  

Initial weights were set to small values between -1 to 1. Then, individual 

chromosomes were applied to the feedforward neural network.  

Fitness Function: After initialization, the fitness value of each individual chromosome 
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was calculated. Fitness values of chromosomes are usually calculated by fitness 

functions, using the mean square error of output neurons in the training set [90].  Fitness 

functions can be defined as: 

       (4.43) 

Where  is the mean square error function of the network [91]. Error functions of the 

network are calculated as: 

    (4.44) 

Where  

 m is number of samples of practice cluster 

 n is the number of neurons in the input layer 

  is the desired output of neuron j in output layer 

  is the actual output of the output layer of neuron j 

Each of the chromosomes was then assigned a fitness value. After the fitness 

evaluation, chromosomes with poor fitness are eliminated from the population. The 

actual output of neuron j can be expressed as:  

      (4.45) 

Where,  is the input signal,  is the weight of the connection between neuron  

and neuron ,    is the bias of neuron , and is the activation function. Sigmoid 
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functions were used as activation functions. Sigmoid functions were defined in Table 4.1.  

Roulette Wheel Selection: In every reproduction step, the offspring is created from 

the parent chromosomes. Different types of reproduction techniques result in a different 

number of new populations. The most common selection technique is the Roulette Wheel 

Selection. In this work, also, The Roulette Wheel Selection scheme was used for 

selecting the best individual chromosomes from the initial population. The size of the 

initial population depends on the application [89]. Parent chromosomes are chosen based 

on the fitness values of each chromosome in the search space. Chromosomes with better 

fitness values are selected to create the offspring. If a roulette wheel which is divided into 

portions, each chromosome is represented by one portion, and each portion has a 

different volume proportional to the fitness value of the corresponding chromosome. The 

wheel is then spun, randomly selecting the parent chromosome. Therefore, selection is 

highly proportional to the fitness values. The probability of being selected, for each 

individual, is calculated as: 

      (4.46) 

where  is the probability and  is the fitness value of the corresponding 

chromosome.  

Genetic Operators: Genetic operators were applied to the selected chromosomes. 

Crossover and mutation are two fundamental operators of the genetic algorithm [89]. 

Genetic operators can create better characteristic offspring from parents. 

A crossover operator aims to produce an offspring by combining the genes of two 

parent chromosomes. Recombination processes are performed according to the crossover 
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probability and crossover points. Operation starts by using two parent chromosomes 

which are selected using Roulette Wheel Selection. An example of a single-point 

crossover is shown in Figure 4-8. 

 

 

Figure 4-8: Single-point crossover operation 

 

 

Mutation operator aims to create a new chromosome by replacing its genes randomly. 

The constant process of creating a new population, using the same chromosomes of the 

current population, can result in the same chromosomes after some time. This problem is 

known as local minimum. Mutation operators overcome this problem by increasing the 

variety in the population. The genes of a chromosome are replaced according to the 

mutation probability and mutation point. An example of a mutation operator is shown in 

Figure 4-9. 

 

 

Figure 4-9: Mutation Operation 

 

 

Iteration: After genetic operators were performed, the termination condition was 
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checked. Termination condition is a stopping criterion. If the termination condition is 

satisfied, the best solution is returned and the training phase of the ENN algorithm ends. 

If the termination condition is not satisfied, the genetic operators are reapplied to the 

chromosomes to find the best solution. According to the termination condition, the size of 

the offspring must be equal to the size of the initial population. The network should be 

able to classify the unknown test objects after training is completed.  

After the training process, the network was tested with new feature sets. The 

parameters of the ENN algorithm used in this work are given in Chapter 5. 

In this chapter, four different classifiers were built to recognize bird species from 

their features. Using these classifiers with four feature extraction methods resulted in 

sixteen recognition results for each species which will be given in the next chapter.   
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Chapter 5  

Data Collection and Simulation 

5.1 Data Collection 

Flight calls were recorded using Wildlife Acoustic‘s Song Meter SM2 night flight call 

package [60], as shown in Figure 5-1. The SM2 night flight call package consists of a 

SM2 recorder platform and a SMX-NFC microphone. The SMX-NFC microphone is 

waterproofed and specially designed to record distant night flight calls. The flat 

horizontal surface, on which the microphone capsule mounted, creates a pressure zone on 

the surface. Specifications of the SMX-NFC microphone are given in Table 5.1. 
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Figure 5-1: Wildlife Acoustics SM2 recorder 

 

 

Table 5.1: Microphone specifications 

 

SMX-NFC Microphone 

Frequency Response: 11kHz 

Signal Gain: 3-6 dB 

Beam Angle: 125
 
degrees 

Type: PZM 

 

 

Data was collected at three different locations, during the spring migration, between 

April and June of 2011 as shown in Figure 5-2. 
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Figure 5-2: Google satellite view of the project area in Ohio, USA 

1 = University of Toledo (Toledo, OH), 

                        2 = Ottawa National Wildlife Refuge (Oak Harbor, OH), 

                        3 = Ohio State University‘s Stone Lab (Put-in-Bay, OH) 

 

The configuration of each SM2 recorder was set using the Song Meter Configuration 

Utility 2.2.5 software from Wildlife Acoustics [61]. The settings, for spring migration 

2011 were selected as shown in Figure 5-3. 

 

 

Figure 5-3: Configuration of the SM2 recorder  

 

 

1 

2 

3 

Song Meter Configuration Utility 2.2.6 
Settings: 

 Model: SM2 

 Schedule: Daily 

 Start: 21:50 

 Duration: 7 hours 

 Sample Rate: 22050 Hz 

 Channels: Mono-R 

 Compression: Off 

 Capacity: 32 GB 

1 

2 
3 
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 Recordings started, every day, an hour after sunset and stopped two hours before 

sunrise resulting in approximately 1GB of data being collected from each recorder per 

day. 459 calls (collected during spring migration) were used for testing. Training calls 

were obtained from Old Bird Inc. [57]. Nocturnal flight calls that were analyzed in this 

thesis come from the following species: American Redstart (AMRE), Common 

Nighthawk (CONI), Savannah Sparrow (SAVS), Swainson‘s Thrush (SWTH) and 

Tennessee Warbler (TEWA).   Species, number of training calls and test calls used are 

given in Table 5.2. 

 

Table 5.2: Training and test calls that are used in this thesis 

 

 

Species Class # of Training Calls # of Test Calls 

AMRE Warbler 20 52 

CONI Goatsuck 17 124 

SAVS Sparrow 20 50 

SWTH Thrush 34 166 

TEWA Warbler 37 67 

 

5.2 Simulation 

A Graphical User Interface (GUI) was created using MATLAB giving the user the 

ability to choose the database between the created databases and use necessary feature 

extraction methods and classifiers. A system flow diagram for the GUI is shown in 

Figure 5-4. 
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Figure 5-4: Flow diagram of the overall system and MATLAB GUI 

 

 

The GUI provides results in different forms with options allowing the user to see the 

signal in time domain, the signal‘s spectrogram, the real class of the signal, and the class 

in which the signal was classified. Also, it allows the user to listen to the signal and start 

a new experiment. An example snapshot of GUI is shown in Figure 5-5. 

 

Figure 5-5: Snapshot of MATLAB GUI 
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All list boxes are updated automatically (after restarting the GUI) if new databases or 

methods are added to the respective folders. 

5.3 Experiment Setups and Results 

Experiments were performed to test the performance of MFCC, DWT, SIFS and 

MMS feature vectors. MFCC features were extracted with a 20 msec Hamming window 

with 50 % overlapping. Twenty four triangular filters were used and the first twelve 

coefficients were taken from each frame in order to generate the feature vector. Wavelet 

coefficients were extracted by using 6-level decomposition and a db10 wavelet function. 

For each call, fifty four features were extracted. Feature vectors carried the information 

of the range, maximum, minimum, mode, median, mean, mean absolute deviation, 

median absolute deviation and standard deviation of the detailed coefficients. SIFS and 

MMS features were extracted from each call as explained in Chapter 3. Extracted feature 

vectors were then sent to the classifiers: HMM, k-NN, MLP and ENN respectively.  

The MATLAB Bioinformatics Toolbox was used to implement k-NN classification. 

The recognition performance of the system was tested with a different number of 

neighbors and different measure metrics. The best results were obtained when k was set 

to 11 and the distance function was set to correlation. Performance of each similarity 

measurement was obtained for each feature extraction scheme. Results are shown in 

Table 5.3.  
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Table 5.3: Comparison of the similarity measurements of k-NN algorithm 

 

 

              kNN-Euclidean kNN-Mahalonobis kNN-Cosine kNN-Correlation 

MFCC: 76% 71% 78% 80% 

DWT: 70% 65% 76% 82% 

SIFS: 73% 62% 79% 85% 

MMS: 84% 73% 83% 89% 

 

        MLP networks were constructed with two hidden layers. Fifty neurons were in the 

first hidden layer and twenty neurons in the second hidden layer. Data was randomly 

divided into train, validation and test sets. Training was stopped after the network‘s error 

on the validation set was not reduced. Performance was measured as the mean-squared 

error of the network. The performance graph of a MLP is shown in Figure 5-6. The best 

validation performance is achieved at epoch (iteration) 10 as 0.10406. Since the 

validation and test curves are very similar, the network does not have an over-fitting 

problem. 
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Figure 5-6: Performance graph of MLP when MMS feature extraction scheme was used 

 

 

HMM algorithm was implemented using equations in Chapter 4. Five classifiers were 

built since there were five different species in the training database. For each training 

process, iteration had been continued until the difference between the newlikelihood and 

oldlikelihood values was obtained as 0.001. Configurations of HMM classifiers for each 

of the feature extraction methods were set as shown in Table 5.4. 
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MFCC 

# of 

Chromosomes 

Neurons in 

Hidden 

Layer 

# of 

Generations 

200 100 1000 

400 200 2000 

600 300 3000 

800 400 4000 

1000 500 5000 

 

DWT 

# of 

Chromosomes 

Neurons in 

Hidden 

Layer 

# of 

Generations 

200 100 1000 

400 200 2000 

600 300 3000 

800 400 4000 

1000 500 5000 

 SIFS 

# of 

Chromosomes 

Neurons in 

Hidden 

Layer 

# of 

Generations 

200 100 1000 

400 200 2000 

600 300 3000 

800 400 4000 

1000 500 5000 

 

MMS 

# of 

Chromosomes 

Neurons in 

Hidden 

Layer 

# of 

Generations 

200 100 1000 

400 200 2000 

600 300 3000 

800 400 4000 

1000 500 5000 

 

Table 5.4: HMM configurations for flight call classification 

 

 MFCC DWT SIFS MMS 

Initial 

elements 

random random random random 

Number of 

Iterations 

126 765 282 400 

Number of 

Clusters 

8 8 8 8 

# of States 
2 10 5 8 

 

Configurations of ENN classifiers for each of the feature extraction methods were set 

as shown in Table 5.5. For each case only one hidden layer was used and the activation 

function was selected as sigmoid. 

 

Table 5.5: ENN configurations for flight call classification 
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 MFCC DWT SIFS MMS 

# of Inputs 12 54 16 28 

# of Outputs 5 5 5 5 

Crossover Probability 0.7 0.7 0.7 0.7 

Mutation Probability Random Random Random Random 

 
 

As it is seen from Table 5.5, for MFCC and DWT; the best performance was obtained 

with 1000 chromosomes with 500 neurons within hidden layer after 5000 generations. 

For SIFS and MMS; the best performance was obtained with 800 chromosomes with 400 

neurons within hidden layer after 5000 generations. Best recognition results were 

obtained when MMS features were used. The mean square error graph of ENN with 

MMS features is shown in Figure 5-7. The error for the random weights is large at the 

beginning of the training process and decreases as the training continues.  

 

 

Figure 5-7: Training performance of the ENN with MMS features 

 

Correct classification percentages for each species and the total correct classification 
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percentages of 459 test calls are given in Table 5.6.  

 

Table 5.6: Percentages of classification accuracy for each feature extraction scheme 

 

 

 

 

Figure 5-8 shows performance of feature extraction methods. It can be seen that 

MMS features outperform MFCC, DWT and SIFT features when HMM, k-NN, MLP and 

ENN are used as classifiers.  

 

 

 

 

               MFCC 

 HMM  

(%) 

kNN 

(%) 

MLP 

(%) 

ENN 

(%) 

ARWB 58 65 63 67 

CONI 69 93 74 92 

SASP 54 68 60 70 

SWTH 70 80 82 84 

TEWB 59 75 68 77 

TOTAL 65 80 73 82 

 

 

                DWT 

 HMM  

(%) 

kNN 

(%) 

MLP 

(%) 

ENN 

(%) 

ARWB 54 66 62 65 

CONI 72 86 73 88 

SASP 60 82 61 83 

SWTH 85 87 92 91 

TEWB 47 73 80 82 

TOTAL 69 82 78 85 

 

                SIFS 

 HMM  

(%) 

kNN 

(%) 

MLP 

(%) 

ENN 

(%) 

ARWB 65 65 57 67 

CONI 76 89 98 94 

SASP 62 84 84 85 

SWTH 77 90 96 87 

TEWB 66 79 85 87 

TOTAL 72 85 90 86 

 

               MMS 

 HMM  

(%) 

kNN 

(%) 

MLP 

(%) 

ENN 

(%) 

ARWB 67 73 79 80 

CONI 79 95 95 96 

SASP 70 80 82 83 

SWTH 80 90 97 84 

TEWB 80 84 89 90 

TOTAL 78 89 92 91 
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Figure 5-8 Performance of Feature Extraction methods 

 

 

Song Scope Implementation 

The recognizer for each species is created by setting the parameters of Song Scope as 

shown in Figure 5-9. 
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Figure 5-9: Song Scope parameter and recognizer information for each species (training) 

 

Results from Song Scope implementation are given in Table 5.7. Song Scope gives a 

total of 70% correct identification results. 

 

 

 

 

 

 

AMRE CONI SAVS SWTH TEWA

TRAINING CALLS

Number of recordings 20 17 20 34 37

Number of annotations used 11 19 14 13 14

PARAMETERS

Sample Rate (Hz) 22050 22050 22050 22050 22050

FFT Size 256 256 256 256 256

FFT Overlap 0,5 0,5 0,5 0,5 0,5

Frequency Min (bins) 45 14 70 14 58

Frequency Range (bins) 57 45 60 45 70

Background Filter 1s 1s 1s 1s 1s

Max Syllable (msec) 30 60 20 60 30

Max Syllable Gap (msec) 20 20 20 20 20

Max Song (msec) 90 100 70 100 90

Max complexity 32 40 32 30 32

Minimum resolution 6 20 6 4 6

Minumum quality 10 10 10 10 10

Minimum score 50 50 50 50 50

RECOGNIZER INFORMATION

Cross training 74.42 ± 10.92%79.44 ± 3.55%82.83 ± 5.70%75.56 ± 4.61% 84.52 ± 4.01%

Total training 70.31 ± 10.24%80.20 ± 3.80%81.57 ± 5.03%80.96 ± 5.18% 82.05 ± 4.47%

Model states 17 36 25 27 26

State usage 4 ± 4 7 ± 2 8 ± 1 5± 3 6 ± 1

Feature vector 4 20 6 4 6

Mean symbols 6 ± 5 20 ± 7 8 ± 2 8± 12 7 ± 1

Syllable types 2 10 3 4 6

Mean durations 0.21 ± 0.06s 0.21 ± 0.03s 0.08 ± 0.01s 0.21 ± 0.08s 0.08 ± 0.08s
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Table 5.7: Results of Song Scope Implementation 

 

 

Species Test Calls Correctly Identified Percentage (%) 

ARWB 52 46 88 

CONI 124 110 89 

SASP 50 30 60 

SWTH 127 102 80 

TEWB 67 32 48 

Total 459 320 70 

 

Figure 5-10 shows the overall accuracy of four classifiers when MMS features were 

used alongside results of the commercial software, Song Scope. It is shown that MLP has 

the highest correct classification rate of 92 %. 

 

 

 

Figure 5-10: Performance comparison of the classifiers when MMS feature extraction is 

used 
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5.4 Quantification of Class Level Migration In NW Ohio 

Spring 2011 

Flight calls were recorded using Wildlife Acoustic‘s Song Meter SM2 night flight call 

package during 2011 Spring bird migration period between April and June of 2011. Data 

was collected at three different locations: University of Toledo (Toledo, OH),                           

Ottawa National Wildlife Refuge (Oak Harbor, OH), and Ohio State University‘s Stone 

Lab (Put-in-Bay, OH) 

 

The Minimum Individual Passing (MIP) [55] method was applied to obtain the total 

number of birds which were then grouped into three classes, rather than being classified 

at the species level. According to the MIP method, for thrushes, calls which were more 

than two minutes apart were assumed to have come from different individuals. For 

thrushes and warblers, however, calls which were more than one minute apart were 

assumed to have come from different individuals.   

The thrush-class calls were in the 2-4 kHz range and their durations were typically 

less than 300 ms.  In this thesis, thrush calls were mainly species of Gray-cheeked 

Thrush, Hermit Thrush, Swainson‘s Thrush, Wood Thrush and Veery. The sparrow and 

warbler class calls were in the 5-11 kHz range and their call durations were observed to 

be less than 150 ms. The observed sparrow and warbler calls were mainly from the 

following species: Fox Sparrow, Grasshopper Sparrow, Savannah Sparrow, White-

crowned Sparrow, White-throated Sparrow, Black and White Warbler, Palm Warbler, 

Tennessee Warbler, Yellow Warbler and Yellow-rumped Warbler. The number of the 

thrushes, warblers and sparrows, calculated using the MIP method from three locations 
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between April 20 – May 29 are given in Figures 5-10 thru 5-13, respectively. 

 

 
 

 

Figure 5-11: Average number of total thrushes detected at three locations during the 

spring migration of 2011 

 

 

 

 

Figure 5-12: Average number of total sparrows detected at three locations during the 
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spring migration of 2011 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-13: Average number of total warblers detected at three locations during the 

spring migration of 2011 

 

More thrush calls were detected than both warbler and sparrow calls. This was 

expected as thrushes are a low-flying species which results in their calls being louder and 

more easily detectable.  The distribution, both between and within bird classes, varied 

greatly from location to location. Very few birds were detected at the University of 

Toledo location because this location does not lie in the migration path of these birds. 

Furthermore, at the Putt-in-Bay location, very few sparrows were detected since they are 

a physically smaller class of birds which is not prone to flying over large bodies of water. 

 

Autumn 2011 

 

Flight calls were recorded using Wildlife Acoustic‗s Song Meter SM2 night flight call 
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package during 2011 fall bird migration period between August and October of 2011. 

 

Data was collected at three different locations: Toledo (Toledo, OH), Ottawa National 

Wildlife Refuge (Oak Harbor, OH), and Ohio State University‗s Stone Lab (Put-in-Bay, 

OH). The number of the thrushes, warblers and sparrows, calculated using the MIP 

method from three locations between August 31 – September 28 are given in Figures 5-

14  thru 5-19 respectively. 

 

 
 

Figure 5-14: Average number of total thrushes detected at three locations during the fall 

migration of 2011 
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Figure 5-15: Average number of total sparrows detected at three locations during the fall 

migration of 2011 

 

 
 

Figure 5-16: Average number of total warblers detected at three locations during the fall 

migration of 2011 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

Identifying and quantifying migratory bird calls, as well as comparing their call 

counts, from different locations provides wildlife biologists with valuable information 

when assessing the behavior of birds in any area, and especially in the vicinity of wind 

turbines. This thesis investigated the capability of different recognition systems for 

identification of bird species based on audio recordings of nocturnal flight calls. 

For five species, flight call databases have been developed by using a commercially 

available CD [57]. Data was collected at three different locations during the spring 

migration 2011. In this thesis, four feature extraction schemes and four classifiers were 

built by using MATLAB software with the aim of identifying these five species from the 

data collected. Also, commercially available bird sound recognition software, Song 

Scope, was used for comparison purposes, yielding seventeen experiments for the 

recognition of birds based on their flight call.  

Syllables were represented with different numbers of acoustic features with different 
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feature extraction schemes. Twelve MFCC features, fifty-four DWT features, sixteen 

Spectrogram-based Image Frequency Statistics (SIFS) and twenty eight Mixed MFCC & 

SIFS Features (MMS) were extracted for each flight call.  These features were fed into 

the following classifiers: k-NN, HMM, DWT and ENN. All classification results from 

the new feature extraction schemes (SIFS and MMS) provided better results when 

compared to traditional MFCC and DWT techniques.  Classification results from the 

MMS feature extraction scheme with MLP classifier provided the best result which was a 

92 % recognition rate. The ENN classifier is relatively a new classifier in the application 

of bird species identification and results were promising. Better recognition rates with 

ENN classifiers may be obtained with large number of chromosomes and generations. 

However, in that case, computational time would also be increased dramatically. Still, 

recognition results were also better than the commercially available Song Scope software 

which had 70 % total recognition rate.  

This research will help biologists in developing mitigation techniques and will also 

help in the development of public policy in regard to the impact of wind farms on bird 

populations.   

6.2 Future Work 

Recording in different places results in inconsistent data as environmental conditions 

and noise distributions are not the same. Furthermore, recordings, taken at the same 

location, may differ if the environmental conditions are not the same. Also, the same 

species in different regions do not always have the same flight call. A detection and 

recognition system needs to be invariant for such differences. Therefore, training call 
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databases should contain a high number of calls, for the species of interest, from different 

geographical regions. The flight call database used in this thesis was obtained from a 

commercially available CD and not collected from three locations where test calls were 

recorded. For this reason, the flight call database could be increased with the new flight 

calls that were recognized in this thesis. This would make the recognition system more 

robust and powerful for the next recording‘s analysis in this region.  
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Appendix A 

Other Experiments Performance 

 

Hypothetical Bird Counting 

If it can be assumed that, from the first detectable bird call, the x, y, and z coordinates 

of the bird can be precisely obtained using the microphone array, the bird is traveling at a 

constant speed, and that the bird is flying linearly, then the information can be known 

about the location of that bird when it makes its next detectable call. This information is 

represented in Figure A.1 as a series of points, which make up a sphere, where that bird 

could potentially be. 
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Figure A-1 Representation of hypothetical bird counting method 

 

This information would be useful when attempting to obtain an accurate bird count in 

an environment where there are more than one bird of the same species in the range of 

the microphone array at one time. If a second call is made, and the location of the origin 

on that call does not lie on the sphere of points, then it can be said that it is coming from a 

separate bird. Since this technique requires the relation of one call to a previous one, a 

restriction governing the length of time between points that are to be related to one 

another, depending on the recording distance and bird speed, must be implemented. 

In this simplified system, it was assumed that the ―birds‖ flight path was linear and 

unidirectional and that the bird‘s call always has the same volume. Since this was only a 
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test, the ―bird‖ call was a distinct sound which was recorded at various known distances 

from the microphone. These recordings were analyzed and the amplitude of the ―bird‖ 

call was found using Song Scope. Then, an amplitude versus distance graph was plotted, 

which can be seen in Figure A.2, using Microsoft Excel and a function was found. Using 

this function, the location of the ―bird,‖ from its initial and subsequent call, could be 

determined in this much simpler situation. 

 

 

 

 

 

 

 

Figure A-2: Amplitude vs. distance graph for hypothetical bird call counting 

 

As a simple demonstration of how this technique could work, Figure A.3 was 

constructed.  
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Figure A-3: Simple demonstration of hypothetical bird counting method 

 

If one assumes that a bird, with the speed of 3 m/s, has an initial call that is detected, 

at t=0sec, 5m away from the microphone and another call that is detected, at t=4sec, 17m 

away from the microphone, then it is assumed these two calls are coming from the same 

bird. This is because the bird will fly 12m further from the microphone in this 4 second 

time span between the calls. On the other hand, if two calls were detected in the same 

location but only 1 second apart, then it would be assumed that they were coming from 

two separate birds.  
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