
Fairytale File Format
Draft v1.2 – Márcio Pais, 2018

The Fairytale file format is designed to be flexible and extensible. It makes heavy use of an efficient byte-
aligned variable length integer encoding strategy (henceforth VLI) and unless stated otherwise, uses little-
endian encoding for non-VLI data types. See the appendix for more information on VLI.

A Fairytale archive is composed of the following structures in linear order:

File header Compressed data Codec definitions Block segmentation Directory tree File list

Aside from the file header and the compressed data itself, all structures are composed of:

Field name Data type
Size VLI
Data variable
Checksum (CRC32) 4 bytes

The size field is specified in bytes and represents the length of the data for the structure. The checksum
field takes into account the size field along with the data of the structure.

Metadata

All metadata related to files and directories is optional, and uses a tag list representation, where each tag
is composed of:

Field name Data type
Tag id VLI
Tag length VLI
Tag content variable

The decoder should ignore unknown tags. The tag length field represents the size, in bytes, of the tag
content only. The decoder should read the tags until it finds a termination tag, i.e., with its tag id set to 0
(zero). This special tag doesn’t require any further fields.

File header

The file header is composed of:

Field name Data type
Magic signature 3 bytes
Version 1 byte
Flags 1 byte
Data size 8 bytes (signed integer)

The magic signature is formed by the ASCII characters “FTL” (0x46, 0x54, 0x4C).

The version byte is currently defined as the ASCII digit “0” (0x30) and should be incremented if
subsequent backward-incompatible changes are introduced.

The flags byte specifies global options that apply to the whole archive. For more information, see the
appendix.

The data size field specifies the size, in bytes, of the compressed block data, and as such is used to
determine the offset to the codec definitions structure.

Codec definitions

The codec definitions structure describes what codecs were used in the compression of the chunks, and
their parameters. It is composed of:

Field name Data type
Number of sequence entries VLI
Codec sequence entries Codec sequence list

The number of sequence entries specifies how many codec configuration sequences are used in the
archive, and is followed by a list with these many elements of codec sequence entries, defined as such:

Field name Data type
Number of codecs VLI
Codec entries Codec list

The number of codecs field specifies how many codecs are used in the sequence, and is followed by a list
with these many elements of codec entries, defined as such:

Field name Data type
Codec id VLI
Parameters variable

The codec id field identifies the codec used and the parameters field contains the required codec
parameters to decompress the data, if any are needed.

Block segmentation

The block segmentation structure describes the blocks that are encoded in chunks in the archive, along
with their relative relationship. It is composed of:

Field name Data type
Chunk info sequences Chunk info sequence list
Block node sequences Block node sequence list

Each chunk info sequence is composed of:

Field name Data type
Chunk size VLI
Checksum (CRC32) 4 bytes
Flags 1 byte
Codec sequence id VLI
Block count VLI
Block type VLI
Block info entries Block info entry list

The chunk size field specifies the size, in bytes, of the compressed chunk. The decoder should keep
reading until an entry of 0 (zero) chunk size is seen (this entry doesn’t require any further fields).

The checksum field applies only to the uncompressed data encoded in the chunk.

The flags field specifies options that apply to this chunk only. For more information, check the appendix.

The codec sequence id field specifies the codec sequence entry to use to decompress this chunk.

The block count field specifies how many block info entries of this block type are encoded in the chunk.

In non-solid compression mode, each chunk encodes only one block. The decoder should read all chunk
info sequences and verify if the total size matches that specified in the data size field of the file header.

Each block info entry is composed of:

Field name Data type
Size VLI
Checksum 2 bytes
Info variable

The block info entries state the size, in bytes, of the uncompressed data representing each block, in linear
order. The relative offsets into the uncompressed chunk data for each block can thus be derived by
accumulating the sizes of previous blocks.

The checksum field is optional and depends on the flags field of this chunk info sequence having the
option “use checksum-per-block” active and the block count being higher than 1 (one). The checksum value
is comprised of the 2 most significant bytes of the CRC32 checksum of the uncompressed data for this
block.

The info field is optional and depends on the block type of this chunk info sequence.

Upon reading each entry, the block is assigned an id, derived incrementally and starting at 0 (zero).

Chunk info sequences are thus required to match the linear order of the compressed chunks of blocks as
they are stored in the archive.

Each block node sequence is composed of:

Field name Data type
Block count VLI
Block type VLI
Block node entries Block node entry list

The block count field specifies how many blocks of this block type will be defined by the following block
node entries. The decoder should keep reading until an entry of 0 (zero) block count is seen (this entry
doesn’t require any further fields).

The block node entries are themselves lists that describe blocks composed of other child blocks, which as
such weren’t defined by the block info entries. Each block node entry is defined as such:

Field name Data type
Number of child blocks VLI
Checksum 2 bytes
Info variable
Block ids VLI list

The number of child blocks field specifies how many child blocks compose the current block. As before,
upon reading each entry, the block is assigned an id, derived incrementally and starting from the lowest
available id.

The checksum field is optional and depends on the flags field of the file header having the option “use
checksum-per-parent-block” active. The checksum value is comprised of the 2 most significant bytes of the
CRC32 checksum of the uncompressed data for this block.

The info field is optional and depends on the block type of this block node sequence.

The block ids list the child blocks of the current block in linear order. Should an entry specify a block id
which has still not been assigned, the decoder must assume the archive is corrupted.

See the appendix for a visual description of this block segmentation structure.

Directory tree

The directory tree is a structure describing the relative relationship of the directories present in the
archive. Should no directories exist, the size field of the structure must be set to 0 (zero), and the checksum
must follow it.

The data field of this structure is composed of a linear list of directory entries, defined as such:

Field name Data type
Parent id VLI
Length VLI
Name UTF8 string
Metadata Tag list

The parent id field states the parent directory of the current entry. If set to 0 (zero), then it belongs to the
root directory. Upon reading each entry, it is itself assigned an id, derived incrementally and starting at 1
(one). Should an entry specify a parent id which has still not been assigned, the decoder must assume the
archive is corrupted.

The length field specifies the size, in bytes, used by the name field. It is up to the decoder to check the
validity of the name string and provide any necessary conversions.

File list

The file list is a structure that contains information about all files present in the archive and cannot have
0 (zero) size. It is composed of a linear list of file entries, defined as such:

Field name Data type
Directory id VLI
Length VLI
Name UTF8 string
Metadata Tag list
Number of blocks VLI
Block ids VLI list

The directory id field states to what directory this file belongs to.

The length field specifies the size, in bytes, used by the name field. It is up to the decoder to check the
validity of the name string and provide any necessary conversions.

The number of blocks field specifies how many blocks compose this file, and is followed by a list with
these many elements of VLI encoded block ids, in linear order. The decoder should validate these ids against
the block segmentation specified.

Appendix

Block segmentation example, full solid-mode

Section Structure Field Value

Chunk info sequences

Chunk info sequence 0

Chunk Size -
Checksum -
Flags -
Codec sequence id -
Block Count 4
Block Type Default

Block info entry 0 Size -
...

Block info entry 3 Size -

Chunk info sequence 1

Chunk Size -
Checksum -
Flags -
Codec sequence id -
Block Count 1
Block Type Image

Block info entry 0 Size -
Info Image info structure

Chunk info sequence 2 Chunk Size 0

Block node sequences

Block node sequence 0 Block count 2
Block Type DEFLATE

Block node entry 0
Number of child blocks 1
Info DEFLATE info structure
Block id 0 2

Block node entry 1
Number of child blocks 1
Info DEFLATE info structure
Block id 0 4

Block node sequence 1 Block count 1
Block Type Base64

Block node entry 0
Number of child blocks 1
Info Base64 info structure
Block id 0 6

Block node sequence 2 Block count 0

In diagram form, this block segmentation corresponds to:

Default, id: 0 Default, id: 1 DEFLATE, id: 5 Default, id: 3 Base64, id: 7

 Default, id: 2 DEFLATE, id: 6

 Image, id: 4

If non-solid compression mode was used, the block segmentation would look like this:

Section Structure Field Value

Chunk info sequences

Chunk info sequence 0

Chunk Size -
Checksum -
Flags -
Codec sequence id -
Block Count 1
Block Type Default

Block info entry 0 Size -
...

Chunk info sequence 3

Chunk Size -
Checksum -
Flags -
Codec sequence id -
Block Count 1
Block Type Default

Block info entry 0 Size -

Chunk info sequence 4

Chunk Size -
Checksum -
Flags -
Codec sequence id -
Block Count 1
Block Type Image

Block info entry 0 Size -
Info Image info structure

Chunk info sequence 5 Chunk Size 0

Block node sequences

Block node sequence 0 Block count 2
Block Type DEFLATE

Block node entry 0
Number of child blocks 1
Info DEFLATE info structure
Block id 0 2

Block node entry 1
Number of child blocks 1
Info DEFLATE info structure
Block id 0 4

Block node sequence 1 Block count 1
Block Type Base64

Block node entry 0
Number of child blocks 1
Info Base64 info structure
Block id 0 6

Block node sequence 2 Block count 0

Variable length integer encoding

Unsigned integers are encoded byte-aligned in 7 bit chunks with a 1 bit flag to specify end-of-encoding,
assigned to the most significant bit (msb) of each byte of the representation. Each iteration consumes the 7
least significant bits (lsb) of the remaining number, activating the flag bit if any more non-zero bits remain.

This scheme allows encoding of all non-negative numbers representable by a 64 bit signed integer in up
to 9 bytes.

File header flags

Name Value Meaning

Use checksum-per-block 0x01 Store 16-bit checksum for every encoded block, for faster
deduplication when adding new files to an existing archive

Chunk info sequence flags

Name Value Meaning

Use checksum-per-parent-block 0x01 Store 16-bit checksum for every parent block, for faster
deduplication when adding new files to an existing archive

File metadata tags

Name Id Length Content
Original file size 1 8 Stores the original uncompressed file size

